ay

Мельникова Елена Сергеевна

ВЛИЯНИЕ АБИОТИЧЕСКИХ ФАКТОРОВ НА ВРЕДОНОСНОСТЬ АЛЬТЕРНАРИОЗА КАРТОФЕЛЯ В УСЛОВИЯХ ЗАПАДА ЛЕСОСТЕПИ ВОРОНЕЖСКОЙ ОБЛАСТИ

Специальность 4.1.3 Агрохимия, агропочвоведение, защита и карантин растений

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата сельскохозяйственных наук

Работа выполнена в федеральном государственном бюджетном образовательном учреждении высшего образования «Воронежский государственный аграрный университет имени императора Петра I» (ФГБОУ ВО Воронежский ГАУ).

Научный руководитель: Мелькумова Елизавета Айрапетовна – док-

тор биологических наук, профессор, профессор

кафедры земледелия и защиты растений

ФГБОУ ВО «Воронежский государственный аграрный университет имени императора

Петра I»

Официальные Зейрук Владимир Николаевич — доктор сельоппоненты: скохозяйственных наук, главный научный со-

трудник отдела агротехнологий ФГБНУ «Федеральный исследовательский центр картофеля

имени А.Г. Лорха»

Газданова Ирина Олеговна — кандидат сельскохозяйственных наук, старший научный сотрудник лаборатории молекулярно-генетических исследований с.-х. растений ФГБУН Федеральный научный центр «Владикавказский научный центр Российской академии наук»

Ведущая организация: ФГБОУ ВО «Брянский государственный

аграрный университет»

Защита диссертации состоится «23» января 2025 года в «12:00» часов на заседании диссертационного совета 35.2.008.03, созданного на базе федерального государственного бюджетного образовательного учреждения высшего образования «Воронежский государственный аграрный университет имени императора Петра I» по адресу: 394087, г. Воронеж, ул. Мичурина, 1, ауд. 149.

С диссертацией можно ознакомиться в научной библиотеке ФГБОУ ВО «Воронежский государственный аграрный университет имени императора Петра I», на сайте: http://www.ds.vsau.ru.

Автореферат разослан «12» ноября 2024 г.

Отзывы на автореферат в двух экземплярах, заверенные и скрепленные гербовой печатью организации, просим направить ученому секретарю диссертационного совета.

Ученый секретарь диссертационного совета

appy

Высоцкая Е. А.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Картофель (Solanum tuberosum L.) – ценнейший продукт питания, без которого жители многих стран, включая Россию, не представляют своего существования. Многие из выращиваемых в России сортов картофеля подвержены влиянию абиотических факторов: высокая температура воздуха в сочетании с воздушной засухой, нестабильная влажность и другие негативные условия для роста и развития культуры. Неблагоприятные условия для растения предрасполагают к возникновению болезней, включая опасные – альтернариоз и фитофтороз, которые способны снижать урожай на 70% и более (Ахатов, 2013), а также оказывать негативное воздействие на пищевые качества. Доказано, что в аграрной продукции, которая инфицирована видами Alternaria sp., в большом объеме способны сохраняться микотоксины вредные для жизнедеятельности человека и практически всех видов животных (Ганнибал, 2011). В современных условиях среди мероприятий, направленных на предотвращение потерь урожая картофеля от комплекса патогенов, основным остается химический метод защиты, а также возделывание сортов с комплексной устойчивостью, что дает возможность сократить применение фунгицидных обработок в период вегетации культуры. Несмотря на разнообразие сортов картофеля до сих пор нет абсолютно устойчивого к альтернариозу и фитофторозу. Постоянно возрастает прессинг патогенов, связанный с возникновением агрессивных рас, что требует новых комбинированных схем применения препаратов, обладающих пролонгированным действием. Вопросы экологической чистоты продукции сельского хозяйства с каждым годом во всем мире приобретают все большее значение. В связи с этим, подбор и применение биологических и малотоксичных многокомпонентных химических препаратов в борьбе с заболеваниями имеет широкие перспективы.

Степень разработанности темы исследований. В настоящее время альтернариоз поражает многие сельскохозяйственные культуры, поэтому ученые активно занимаются изучением данного патогена. Ганнибал Ф.Б. (2011) разработал методические подходы по мониторингу альтернариозов сельскохозяйственных культур и идентификации грибов рода *Alternaria sp.* Вопрос вредоносности альтернариоза на картофеле изучают Шпаар Д. (2004), Орина А.С. (2010, 2011), Ахатов А.К. и соавт. (2013), Смирнов А.Н. и соавт. (2015, 2020), Злотников А.К. и соавт. (2016), Попов Ю.В. и соавт. (2018), Кузнецова М.А. (2020), Зейрук В.Н. (2021), Хютти А.В. и соавт. (2022), и др., работы которых послужили научной базой и методической основой для построения и разработки мер защиты против этого вредоносного заболевания. В годы исследований и по настоящий момент, альтернариоз остается актуальной проблемой для картофелеводов Воронежской области, поэтому необходимо проведение исследований в условиях конкретной эколого-географической зоны.

Цель исследования: установить влияние абиотических факторов на вредоносность альтернариоза картофеля в условиях запада лесостепи Воронежской области.

Для реализации цели ставились следующие задачи исследования:

- 1. Выявить особенности биологии развития альтернариоза на картофеле в конкретных агроклиматических условиях Воронежской области;
- 2. Определить уровень распространенности и развития альтернариоза в зависимости от сорта картофеля.
- 3. Проанализировать многолетний мониторинг распространенности и развития альтернариоза картофеля в условиях Воронежской области;
- 4. Определить биологическую и экономическую эффективность применения фунгицидов в защите картофеля от альтернариоза.

Научная новизна диссертационного исследования. Подробно изучено в условиях запада лесостепной зоны Воронежской области опасное и вредоносное заболевание – альтернариоз (Alternaria solani Sorauer и Alternaria alternata (Fr.) Keissl) картофеля. Приведен анализ данных многолетнего мониторинга распространенности и развития заболевания по Воронежской области (1969-2023гг.), где выявлена тенденция скачкообразного развития альтернариоза картофеля. Установлены пики активности и депрессии болезни: тах 1976, 1984, 1985, 2002 и 2005 гг.. и min в 1975, 1982, 2003 и 2017 годы. Выявлено, что проявление альтернариоза цикличны и имеют периоды депрессии (1991–2003; 2017 по настоящий момент) и роста (1976–1990; 2004–2016), которые повторяются через каждые 12-14 лет. Обнаружена тесная прямая корреляционная зависимость между распространенностью и степенью развития альтернариоза на изучаемых сортах картофеля, а также на основе анализа многолетнего мониторинга этих показателей, отмечена обратная корреляционная зависимость между показателями распространенности и урожайности культуры. Установлено, что в годы с недостаточным увлажнением исследуемые сорта: Ред Скарлетт, Рокко и Пикассо при условии наличия низкого инфекционного фона слабо (степень поражения до 10%) подвержены альтернариозу и для сохранения урожая достаточно применения биофунгицида Альбит, ТПС в норме 0,05 л/га. Однако, в годы с благоприятными погодными условиями для развития патогена и степенью поражения листовой пластинки более 10% рекомендовано применение химических фунгицидов направленного действия, таких как Полирам ДФ, ВДГ (2,5 кг/га); Ридомил Голд МЦ, ВДГ (2,5 кг/га); Браво, КС (3 л/га). Впервые получена чистая культура Alternaria alternata (Fr.) Keissl, выделенная с пораженных листьев этих сортов картофеля. Установлено, что биологический материал с сорта Рокко оказался более спороносным.

Теоретическая и практическая значимость работы. Проведено сравнение эффективности биологических (Альбит, ТПС (*Поли-бета-гидроксимасляная кислота* 6,2+ *магний сернокислый* 29,8 + *калий фосфорнокислый* 91,1 + *калий азотнокислый* 91,2 + *карбамид* 181,5 г/кг) 0,05 л/га в период вегетации и 0,1 л/т обработка клубней перед посадкой); Гамаир, СП (*Bacillus subtilis*, штамм M-22 ВИЗР(титр не менее 10^11 КОЕ/г)) 60 г/га в период вегетации и 3 г/т обработка клубней перед посадкой) и химических (Максим, КС(*флудиоксанил* 25 г/л) 0,4 л/т

обработка клубней перед посадкой; ТМТД, ВСК (тирам 400 г/л) 5л/т обработка клубней перед посадкой; Полирам ДФ, ВДГ (метирам 700 г/кг) 2,5 кг/га в период вегетации; Ридомил Голд МЦ, ВДГ (манкоцеб 640 г/кг + мефеноксам 40 г/кг) в норме 2,5 кг/га и Браво, КС (хлороталонил 500 г/л) 3 л/га в период вегетации) фунгицидов на распространенность и развитие альтернариоза в условиях недостаточного увлажнения и засухи, которые в годы с умеренным нарастанием инфекции способны повысить болезнеустойчивость и сохранить урожайность этой ценной культуры. Обоснованы практические характеристики биологических фунгицидов Альбит, ТПС и Гамаир, СП, которые в годы со слабым развитием альтернариоза (до 10% поражения листа) способны защитить культуру от листовой формы и урожай от клубневого проявления альтернариоза. Подтверждено утверждение о том, что альтернариоз – заболевание стареющих тканей. В годы исследований массовое проявление патогена на всех изучаемых сортах картофеля разного срока созревания обнаружено во второй половине вегетации культуры, что соответствует фенологической фазе «созревание-полное увядание». Анализ многолетнего мониторинга альтернариоза картофеля представлен графически, где четко различимы пики подъема и спада болезни, что имеет важное значение при грамотном применении защитных мероприятий.

Методология и методы исследования. При выполнении диссертационной работы были использованы общепринятые в защите растений полевой, лабораторный, аналитический и статистический методы. Для достижения поставленной цели и выполнения задач в работе использованы имеющиеся в свободном доступе научные материалы и разработки (книги, монографии, статьи и т. д.).

Степень достоверности результатов. Достоверность и обоснованность результатов подтверждается необходимым объемом полученных нами выполненных наблюдений, комплексным подходом к изучению систем защиты, заболеваний, снижающих распространенность мониторингом сохраняющих урожай и качество клубней картофеля с соблюдением общепринятых методик и ГОСТов. При обработке полученных результатов применяли современные методы статистической обработки данных в программе Microsoft Excel 2010, PAST 4.0.7, Statistica-10, а также сопоставлением и анализированием результатов исследований и наблюдений собственных с данными, которые были получены ранее учеными и результатами многолетнего мониторинга.

Положения, выносимые на защиту:

- 1. Абиотические факторы, влияющие на вредоносность альтернариоза картофеля.
- 2. Биологические особенности и динамика развития альтернариоза картофеля в условиях запада лесостепи Воронежской области.
- 3. Биологическая и экономическая эффективность фунгицидных обработок в уязвимые фазы картофеля альтернариозом.

Апробация результатов работы. Информация по результатам исследований научно-практических конференциях профессорскопреподавательского состава, аспирантов и научных сотрудников Воронежского государственного агроуниверситета им. императора Петра I (2012-2014), на Всероссийском конкурсе научно-исследовательских работ студентов и аспирантов в области биологических наук (Ульяновск, 2012), Межрегиональном конкурсе «БайСтади» (Москва, 2012), Международной конференции, посвященной 75-летию Ботанического сада им. проф. Б.М. Козо-Полянского и 100-летию со дня рождения проф. С.И. Машкина (Воронеж, 2012), на съезде по защите растений в Санкт-Петербурге 2013 г., Всероссийском конкурсе на лучшую работу среди студентов, аспирантов и молодых ученых высших учебных заведений Минсельхоза России (Воронеж, 2014), Всероссийской научной конференции «Научные чтения памяти профессора Б.М. Козо-Полянского» (Воронеж, 2023), Научно-практической конференции с международным участием «Защита и карантин растений» (ФГБУ «ВНИИКР, Быково, 2023).

Публикации. По материалам проведенных исследований опубликовано 15 печатных работ, включая 4 статьи в изданиях, рекомендованных ВАК РФ.

Личный вклад соискателя. Личный вклад диссертанта заключается в разработке систем защиты культуры, выполнении всего объема исследовательской работы, обработке и интерпретации полученных данных, подготовке материалов научных публикаций, написании диссертационной работы и автореферата, а также разработке рекомендаций производству.

Структура и объем диссертации. Диссертационная работа содержит введение, 4 главы, заключение, рекомендации производству, информацию о перспективе дальнейшей разработки темы исследования, приложений и списка литературы. Работа изложена на 160 страницах компьютерного текста, содержит 12 таблиц, 45 рисунков и 16 приложений. Список литературы включает 258 источников, из которых 28 зарубежных авторов.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

1. ОСОБЕННОСТИ ВОЗДЕЛЫВАНИЯ КАРТОФЕЛЯ. ПАТОГЕНЫ, ОКАЗЫВАЮЩИЕ ВЛИЯНИЕ НА УРОЖАЙНОСТЬ КУЛЬТУРЫ

(аналитический обзор литературы)

В главе показано значение культуры, включая биологию, ареал произрастания и особенности развития. Представлено краткое описание патогенов, оказывающих негативное влияние на развитие картофеля. Проанализированы литературные источники по болезням картофеля как отечественных, так и зарубежных авторов.

2. ОБЪЕКТЫ ИССЛЕДОВАНИЙ, УСЛОВИЯ И МЕТОДИКА ПРО-ВЕДЕНИЯ ЭКСПЕРИМЕНТОВ

В главе приведены сведения о географических, климатических и почвенных характеристиках, а также условиях и методике проведения экспериментов (2012—2014 и 2022—2023 гг.), которые проводились в КФХ «Азовцев» Каширского района Воронежской области. Лабораторные исследования осуществлялись в условиях кафедры защиты растений ВГАУ.

Объектами исследований служили сорта картофеля разного срока созревания: Рокко, Ред Скарлетт и Пикассо (I репродукции), входящие в Госреестр РФ.

Предшественником была яровая пшеница. С осени вносили удобрения: Аммофос 10:46-5 ц/га; калий хлористый 60%-6 ц/га и безводный аммиак - 140 кг д.в./га. Весной в борозду при посадке применяли диаммофоску 10:26:26-2,7 ц/га. Почвы опытного участка — чернозем выщелоченный среднесуглинистый, содержание гумуса колеблется от 4,4 до 4,9%, реакция почвенного раствора — нейтральная (рН сол>6,0), сумма поглощенных оснований — 18,3-22,2 мг-экв/100 г почвы, степень насыщенности основаниями — 89-90%. Содержание в почве обменного калия очень низкое 41-80 мг/кг, а подвижного фосфора, высокое 151-200 мг/кг.

Проанализированы метеорологические данные в годы исследований.

Полевые опыты заложены строго по методике полевого опыта (Доспехов, 1985). Размер опытной делянки 25 m^2 , повторность 4-кратная, размещение делянок рендомизированное.

Схема вариантов опыта представлена в таблице 1.

 $N_{\underline{0}}$ Варианты опыта Обработка клубней Бутонизация Конец цветения (обперед посадкой разование клубней) Без обработки Контроль Максим, КС 3 ТМТД, ВСК V V 4 Альбит, ТПС V Гамаир, СП (эталон) Альбит, ТПС V V V Гамаир, СП V Полирам ДФ, ВДГ (эталон) V Ридомил Голд МЦ, ВДГ V V Браво, КС 10

Таблица 1 - Схема опыта в КФХ «Азовцев» 2012–2014 гг.

Обработка клубней картофеля перед посадкой осуществлялась препаратами Максим, КС (0,4 л/т) и Альбит, ТПС (0,1 л/т). За эталон к препарату Максим, КС взят ТМТД, ВСК(5 л/т), а к биопрепарату Альбит, ТПС Гамаир, СП (3 г/т клубней), в период вегетации (0,06 кг/га).

В период вегетации картофеля в КФХ «Азовцев» против альтернариоза применяли фунгициды Полирам ДФ, ВДГ (2,5 кг/га) (эталон), Ридомил Голд МЦ, ВДГ

(2,5 кг/га), Браво, КС (3 л/га), а также Альбит, ТПС(0,05 л/га) и Гамаир, СП (0,06 кг/га). Контролем служили эти же сорта без обработки препаратами.

В 2022—2023 гг. проводили сравнение эффективности схем биологических и химических фунгицидов против альтернариоза картофеля. Схема защиты биопрепаратами: обработка клубней перед посадкой Альбит, ТПС (0,1 л/т семян); в период полные всходы — Гамаир, СП (0,06 кг/га), в период бутонизации — Альбит, ТПС (0,05 л/га); в фазу цветения применяли Гамаир, СП (0,06 кг/га) и в период образования клубней (Альбит, ТПС — 0,05 л/га). Схема защиты химическими фунгицидами: Максим, КС (0,4 л/т клубней) перед посадкой; в фазу полные всходы — Полирам ДФ, ВДГ (2,5 кг/га); образование бутонов — Ридомил Голд МЦ, ВДГ (2,5 кг/га); цветение — Полирам ДФ, ВДГ (2,5 кг/га) и в период образования клубней — Браво, КС (3 л/га).

Отбор проб и диагностика фитопатогенов, учеты распространенности и развития болезней картофеля осуществлялись с использованием методов клубневого анализа в соответствии с ГОСТ Р 55329—2012 Р, ГОСТ 33996–2016, а также согласно методическим указаниям по регистрационным испытаниям фунгицидов в сельском хозяйстве»/под ред. В.И. Долженко (2009).

Биологическую эффективность испытываемых препаратов определяли по формуле Г. С. Груздева (1983).

Урожайные данные полевых опытов обрабатывали математически, применяя метод дисперсионного анализа (Доспехов, 1985) с использованием компьютерной программы Microsoft Excel 2010, Statistica-10.

В качестве комплексного показателя влаго- и теплообеспеченности использовали гидротермический коэффициент Селянинова (ГТК).

Структурный анализ урожая картофеля проводили на каждой делянке с площади 5,2 м². Расчет экономической эффективности технологических систем защиты картофеля от альтернариоза проводили в соответствии с методическими рекомендациями (Гончаров, 2017).

При выполнении данной работы по выделению гриба в чистую культуру *Alternaria alternata* на среде Чапека с сортов Рокко, Ред Скарлетт и Пикассо опирались на методические указания «Микология. Методы экспериментального изучения микроскопических грибов, 2004», «Основные методы фитопатологических исследований» и «Шкала цветов. Пособие для биологов при научных и научно-прикладных исследованиях» (Бондарцев, 1954).

3. АБИОТИЧЕСКИЕ ФАКТОРЫ, ВЫЗЫВАЮЩИЕ АЛЬТЕРНАРИОЗ КАРТОФЕЛЯ. ОСОБЕННОСТИ РАЗВИТИЯ

3.1 Абиотические факторы, провоцирующие развитие патогенов на картофеле

В годы проведения исследований (2012–2014, 2022–2023 гг.) отмечались неблагоприятные условия для развития картофеля в отдельные месяцы вегетации. В 2012 и 2014 гг., июль оказался наиболее жарким. Среднемесячная температура

воздуха достигала 22,1°C и 22,3°C соответственно, что в сочетании с недостаточным количеством осадков привело к угнетению растений и торможению их развития, а также проявлению заболеваний. По влагообеспеченности 2012 и 2013 годы характеризуются недостаточным влагообеспечением (ГТК = 1,2 и ГТК=1,0 соответственно), 2014 год засушливый (ГТК=0,8), 2022 и 2023 – сухие (ГТК=0,3). Такие погодно-климатические условия приемлемы для выращивания картофеля, но из-за воздушной засухи, недостатка влаги в почве происходило угнетение культуры, ослаблялся естественный иммунитет и растения оказались восприимчивы к проявлению патогенов, включая альтернариоз картофеля. Нарастание распространенности и развития альтернариоза на всех сортах, независимо от срока созревания, отмечено в фазу активного роста ботвы (цветение) и далее по фазам онтогенеза картофеля.

Прямая корреляционная зависимость между ГТК и распространением патогена обнаружена на сортах картофеля Рокко, Ред Скарлетт, Пикассо в фазу созревания. Прослеживается прямое влияние этих показателей в период формирования клубней (фазу созревания) и составляет 0,68. В период формирования урожая также выявлена тесная прямая корреляционная зависимость между показателями ГТК и развитием альтернариоза картофеля и составляет 0,21.

На основании этого факта возможно сделать вывод о том, что в условиях лесостепи Воронежской области в засушливые годы и годы с недостаточным увлажнением испытанные сорта подвержены альтернариозу и нуждаются в защитных мероприятиях.

3.2 Особенности развития альтернариоза картофеля в условиях запада лесостепи Воронежской области

Несмотря на то, что альтернариоз заболевание стареющих тканей, он может проявляться на ослабленных растениях в течение всего периода вегетации культуры. Результаты проведенных учетов на изучаемых сортах картофеля в годы исследований являются подтверждением. Первый визуальный осмотр проводили в фазу быстрого роста ботвы (бутонизация). В контрольном варианте на всех сортах проявление альтернариоза с превышением ЭПВ (1% и более) обнаружено в эту фазу развития и отмечалось в течение всего периода вегетации. Запланированные обработки фунгицидами по вегетации в годы исследований проводили по видимым симптомам альтернариоза на исследуемых сортах.

Больший процент поражения патогеном соответствует второй половине вегетации картофеля, начиная с периода цветения, показательным служит контрольный вариант.

В период наблюдения 2012-2014гг. наиболее благоприятные погодные условия, провоцирующие развитие альтернариоза, оказались в июле 2014 года: среднемесячная температура воздуха составила 22,3°C, а сумма осадков 2 мм. Несмотря на это, при учете в фазу цветения, которая наблюдалась в июле, проявление альтернариоза было минимально (отсутствие капельной влаги). Нарастание заболевания отмечено в период формирования урожая – фаза созревания (Таблица 2).

Таблица 2 — Распространенность и развитие альтернариоза картофеля в период вегетации по фазам культуры на контрольном варианте

Сорт		Ред Скарлетт								
	Распро	страненнос	ть (Р, %)	Pa						
Годы	Бутониза-	Цвете-	Образова-	Бутониза-	Цвете-	Образова-				
	ция	ние	ние клубней	ция	ние	ние клубней	ГТК			
			(созревание)			(созрева-				
						ние)				
2012	2,0	7,1	7,1 28,1 0,		1,8	7,0	1,2			
2013	10,3	16,3	22,3	2,5	4,0	7,8	1,0			
2014	8,0	16,1	20,0	2,0	6,0	6,5	0,8			
Рокко										
2012	1,1	10,3	25,1	0,4	2,5	6,3	1,2			
2013	8,0	12,0	21,0	2,0	3,0	6,0	1,0			
2014	6,4	14,1	21,0	1,5	5,0	6,3	0,8			
Пикассо										
2012	3,0	9,2	20,1	0,8	2,3	5,0	1,2			
2013	7,0	18,3	22,0	1,8	5,3	7,0	1,0			
2014	3,0	10,4	14,0	0,8	2,5	4,5	0,8			
2022	30,2	39,9	70,0	1,5	3,5	8,8	0,4			
2023	23,2 35,0		66,0	1,5	5,5	14,8	0,4			

В 2022 и 2023 годах первые признаки альтернариоза выявлены в фазу бутонизации на контрольных вариантах и превышали ЭПВ (более 1%). Массовое распространение альтернариоза картофеля отмечалось на стареющих листьях картофеля в фазу образования клубней (после цветения). Аналогичные данные получены нами и при исследованиях в 2012–2014 гг. На контрольном варианте в 2023 году в фазу созревание развитие патогена достигло 14,8%, что свидетельствует о наличии условий благоприятных для развития альтернариоза. В варианте с защитой культуры биопрепаратами в эту же фазу развитие микоза достигло 1,8%, а при защите химическими фунгицидами — 0,8%. Эти значения информируют о том, что в сложившихся погодно-климатических условиях эффективно применение как биопрепаратов, так и химических в сравнении с вариантом без обработки.

Отмечена тесная прямая корреляционная зависимость (коэффициент корреляции 0,99) между показателями распространенности и развития альтернариоза на всех этапах развития культуры в годы исследований на сортах картофеля в вариантах опытов.

Установлена обратная корреляционная связь между урожайностью картофеля и поражением культуры патогеном в годы исследований: -0,88. Проанализирована зависимость каждого сорта по годам. На сорте Ред Скарлетт в 2012, 2013 и 2014 годы этот показатель составил: -0,81; -0,65 и -0,72 соответственно; на сорте картофеля Рокко: -0,87; -0,51 и -0,63; сорт Пикассо характеризуется: -0,83; -0,33 и -0,43 соответственно.

3.3 Инфицированность клубней картофеля в годы исследования

Клубневой анализ семенного материала картофеля на сортах в годы исследований показал, что уровень зараженности паршой обыкновенной и ризоктониозом превышал ГОСТ Р 55329–2012 и ГОСТ 33996–2016. Несмотря на распространенность парши обыкновенной на всех сортах (до 43%) и ризоктониоза на клубнях (до 59%) развитие болезней не превысило 33,3% поверхности клубней для парши и 10% для ризоктониоза. По годам проведения опытов единично встречались клубни с признаками поражения альтернариозом и фитофторозом, которые сразу выбраковывались. Во всех вариантах опыта наиболее подвержен альтернариозу оказался сорт картофеля Ред Скарлетт.

3.4 Возбудитель альтернариоза в чистой культуре. Сравнительная характеристика культуральных признаков различных штаммов гриба A. alternata, источников питания и факторов внешней среды на рост и развитие патогена

Выделение грибов *A. alternata* и *A. solani* в чистую культуру проводили с использованием стандартных микробиологических методов. В ходе проведенных лабораторных исследований установлено, что на территории Воронежской области на картофеле преобладает вид *А. alternata*, при культивировании которого на среде Чапека произошла дифференциация с выделением четырех штаммов, отличающихся друг от друга морфолого-культуральными признаками: размером, консистенцией и цветом колоний. Различия, обнаруженные у штаммов, свидетельствуют о сложном внутривидовом составе этого гриба. Более спороносным оказался биологический материал с сорта Рокко.

3.5 Анализ многолетнего мониторинга распространенности и развития альтернариоза на картофеле

Обзор многолетних сведений по распространенности (P, %) и развитию (R, %) альтренариоза картофеля составлен на основе данных, полученных специалистами филиалов ФГБУ «Россельхозцентр» Воронежской области в результате проведения фитомониторинга. Нами проведен анализ многолетних данных динамики альтернариоза картофеля в Воронежской области, представлен графически и установлена зависимость между распространенностью и развитием патогена в период с 1969 по 2023 годы.

Временной промежуток 2012—2014 годы, когда проводились исследования, приходится на период «подъема» распространенности патогена по Воронежской области (18,1—22,7%) после депрессии в 2003 году (Р=6,3% R=1,1%), который продолжался до 2016 года (Рисунок 1).

Напротив, годы исследований 2022 и 2023 приходятся на период депрессии согласно данным многолетнего мониторинга (P=2,9%; 1,32% и R=0,31%; 0,36% соответственно по годам) по Воронежской области.

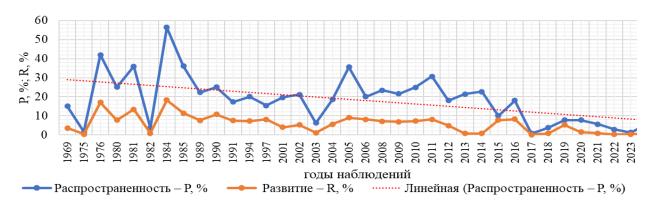


Рисунок 1 — Динамика распространенности и развития альтернариоза картофеля, % (1969—2023 гг.)

Поскольку в хозяйстве КФХ «Азовцев» картофель возделывается долгие годы, то присутствует запас патогена в почве, поэтому в варианте без защиты (контрольном) среднее значение за период 2022–2023 гг. на момент образования клубней составляет до P=70% R=14,8%, что свидетельствует о серьезной патогенной нагрузке на культуру и необходимости защитных мероприятий. В варианте с биологической защитой в период образования клубней эти значения за годы исследований составляют P=33% R=1,8%, с защитой химическими фунгицидами P=25% R=0,8%, что указывает на эффективность защитных мероприятий.

Руководствуясь имеющимися показателями Р,% и R,% альтернариоза картофеля, выдвигаем гипотезу о том, что проявление болезни циклично и имеет периоды депрессии (1991–2003; 2017 по настоящее время) и роста (1976–1990; 2004–2016), которые повторяются через каждые 12-14 лет. На основе полученных нами данных в опытах распространенность микоза в отдельные годы (2022 - 2023 г.) оказалась выше значений этого показателя по области (18,1–22,3%) и составила от 21 до 70% на контроле, что свидетельствует о необходимости защиты культуры и уделению внимания мерам профилактики.

4. ЭФФЕКТИВНОСТЬ ФУНГИЦИДНЫХ ОБРАБОТОК В УЯЗВИ-МЫЕ ФАЗЫ КАРТОФЕЛЯ ПРОТИВ АЛЬТЕРНАРИОЗА

4.1 Биологическая эффективность фунгицидов на сортах картофеля разного срока созревания против альтернариоза

По результатам проведенных учетов в 2012 г. при недостаточном увлажнении высокую биологическую эффективность (БЭ, %) показали химические фунгициды. Полирам ДФ, ВДГ (2,5 кг/га) на сорте Ред Скарлетт проявил эффективность 78%; на сорте Пикассо – Ридомил Голд МЦ, ВДГ (2,5 кг/га) – 95% и Браво, КС (3 л/га) – 70%; на Рокко отмечен вариант с Ридомил Голд МЦ, ВДГ (2,5 кг/га) – 84,1%. Высокая БЭ обнаружена у биологических фунгицидов на сорте картофеля Рокко и составила в варианте с повторным применением в период вегетации препарата Альбит, ТПС (0,05 л/гa) - 60,3% и Гамаир, СП (0,06 кг/гa) - 68,3%.

Показатель БЭ на сорте Пикассо в условиях 2013 года на вариантах с биофунгицидами в период вегетации — Альбит, ТПС — 60,7%; Гамаир, СП — 67,9%; при

обработке клубней перед посадкой: Альбит, ТПС -64,3% и Гамаир, СП -60,7%. Химические фунгициды в условиях года оказались менее эффективны. Наиболее эффективен на всех сортах Полирам ДФ, ВДГ (Пикассо -60,7%; Рокко -58,3%; Ред Скарлетт -51,6%); Ридомил Голд МЦ, ВДГ (48,4%) и Браво, КС (47,1%) на сорте Ред Скарлетт. Развитие альтернариоза в 2013 году незначительно повлияло на урожайность картофеля.

Результаты наблюдений за проявлением альтернариоза свидетельствуют о невысокой БЭ фунгицидов (не более 59%) против альтернариоза в условиях 2014 года. Несмотря на большее развитие альтернариоза урожайность в сравнении с 2012 и 2013 годами исследований, не пострадала, но качество было ниже, что подтверждает клубневой анализ. При обработке клубней перед посадкой биофунгицидом Альбит, ТПС (0,1 л/т) БЭ на сортах варьировала в пределах 22–27%, при использовании в период вегетации (0.05 л/га) двукратно на сорте Ред Скарлетт этот показатель 15,4%; на Пикассо – 11,1% и на сорте Рокко – 36%. На сорте Пикассо в варианте с обработкой клубней перед посадкой Гамаир, СП (0,003 кг/т) БЭ сопоставима с контролем, что может свидетельствовать о том, что действие препарата завершено. Однако, на сорте Ред Скарлетт в этом же варианте данный показатель – 57,7%, на сорте Рокко – 59,2% и является наиболее эффективным в фазу созревания. Вариант с протравителем Максим, КС (0,4 л/т) на сорте Рокко показал БЭ 56%, что отражает длительный защитный эффект в засушливых условиях, в то время как на сорте Пикассо -22,2%, а на Ред Скарлетт – 11,5%. Препараты, применяемые в период вегетации, проявили неоднозначную эффективность, так Полирам ДФ, ВДГ (2,5 кг/га) на сортах Рокко и Пикассо показал БЭ 52% и 50% соответственно, однако на Ред Скарлетт всего 38,5%. БЭ фунгицида Ридомил Голд МЦ, ВДГ (25 кг/га) тоже была нестабильна по сортам: Ред Скарлетт – 42,3%, Рокко – 40%, а Пикассо – 22,2%. Действие фунгицида Браво, КС в норме 3 л/га на всех сортах варьировало в диапазоне 23-39%.

Биологическая эффективность фунгицидов в 2022 и 2023 годах отмечена на высоком уровне. Биосистема защиты показала эффективность 82% в 2022 году и 88% в 2023 году, что свидетельствует об эффективной работе биофунгицидов против микозов, включая альтернариоз картофеля. Биологическая эффективность системы защиты с химическими фунгицидами превзошла эффективность биопрепаратов и составила на конец вегетации 90% и 94% соответственно.

Разброс эффективности фунгицидов по сортам можно объяснить запасом инфекции в посадочном материале, восприимчивостью сорта, своевременностью и качеством обработки. Признано и научно обосновано, что применение фунгицидов наиболее эффективно с целью профилактики, до проявления видимых признаков патогена. Опираясь на полученные результаты, можно констатировать, что в годы неблагоприятные для развития альтернариоза (при отсутствии капельной влаги) целесообразно применение биологических препаратов Альбит, ТПС и Гамаир, СП. При благоприятных условиях для распространенности и развития альтернариоза обязательно использовать химические фунгициды (Максим, КС; ТМТД, ВСК; Ридомил Голд МЦ, ВДГ; Полирам ДФ, ВДГ и Браво, КС) как самостоятельно, так и в

комплексе с биологическими, соблюдая сроки применения и интервалы между обработками.

4.2 Хозяйственная эффективность применения фунгицидов Уровень урожайности товарных клубней картофеля (фракция 45+) в вариантах защиты культуры по годам отличался (Таблица 3).

Таблица 3 - Урожайность товарных клубней картофеля при разных вариантах защиты культуры в полевом опыте в годы исследований (т/га)

№	Сорт	Ред Скарлетт					
Π/Π	Год	2012	2013	2014	Среднее		
1	Контроль	13,6	13,1	14,0	13,6		
2	Максим, КС	15,0	15,3	15,2	15,1		
3	ТМТД, ВСК	14,6	15,1	16,0	15,2		
4	Альбит, ТПС перед посадкой	14,6	15,2	14,8	14,9		
5	Гамаир, СП перед посадкой	14,5	15,3	15,0	14,9		
6	Альбит, ТПС в период вегетации	14,8	18,5	19,2	17,5		
7	Гамаир, СП в период вегетации	18,9	15,1	15,8	16,6		
8	Полирам, ДФ	18,8	18,6	19,3	18,9		
9	Ридомил Голд МЦ, ВДГ	19,3	18,9	19,9	19,4		
10	Браво, КС	19,8	19,5	20,3	19,8		
Рокко							
1	Контроль	13,8	13,0	14,6	13,8		
2	Максим, КС	14,9	13,2	16,0	14,7		
3	ТМТД, ВСК	15,1	16,2	16,3	15,9		
4	Альбит, ТПС перед посадкой	14,9	13,5	15,8	14,7		
5	Гамаир, СП перед посадкой	15,1	13,3	15,6	14,7		
6	Альбит, ТПС в период вегетации	15,4	19,0	20,9	18,4		
7	Гамаир, СП в период вегетации	18,6	16,1	16,4	17,0		
8	Полирам, ДФ	18,8	19,2	20,8	19,6		
9	Ридомил Голд МЦ, ВДГ	19,2	19,8	20,6	19,9		
10	Браво, КС	19,8	20,0	21,0	20,3		
	Пика						
1	Контроль	13,7	13,7	14,2	13,9		
2	Максим, КС	15,1	15,0	15,7	15,3		
3	ТМТД, ВСК	14,9	15,2	16,1	15,4		
4	Альбит, ТПС перед посадкой	14,9	14,1	15,6	14,9		
5	Гамаир, СП перед посадкой	15,1	15,0	15,5	15,2		
6	Альбит, ТПС в период вегетации	15,1	18,4	21,0	18,1		
7	Гамаир, СП в период вегетации	18,3	15,4	16,5	16,7		
8	Полирам, ДФ	18,7	18,7	21,0	19,5		
9	Ридомил Голд МЦ, ВДГ	19,1	20,5	21,2	20,3		
10	Браво, КС	19,4	20,7	21,2	20,4		
	HCP ₀₅	0,9	1,7	1,6	-		

В сравнении с контрольным вариантом на всех сортах в опытах отмечена прибавка урожайности.

За период исследований 2012–2014 гг. в среднем самая высокая урожайность по сортам отмечена в варианте 10 с применением химического фунгицида Браво, КС в период вегетации. На сорте Ред Скарлетт урожайность зафиксирована на уровне $19.8\,$ т/га, на Рокко $-20.3\,$ т/га, на Пикассо $-20.4\,$ т/га, что соответствует характеристикам сортов.

Данные по урожайности сорта Пикассо в 2022–2023 гг. сопоставимы с данными, которые получили ранее в 2012–2014 гг. исследований и соответствуют урожайности сорта. В сравнении с контрольным вариантом (11,5 т/га – 2022 г. и 13,8 т/га – 2023 г.) при защите биологическими препаратами получена прибавка 7,2 т/га и 5,8 т/га соответственно, при защите химическими препаратами прибавка урожая составила 9,7 т/га и 8,6 т/га соответственно. В 2022 году НСР $_{05}$ =1,2; в 2023 году этот показатель составил 0,9.

4.3 Экономическая эффективность использования фунгицидов при защите картофеля от микозов

Для определения экономической эффективности разработанных мероприятий в хозяйстве КФХ «Азовцев» Каширского района Воронежской области проведена оценка приемов защиты картофеля от альтернариоза.

На всех испытуемых сортах получена дополнительная прибыль и отмечен положительный уровень рентабельности (УР, %).

В зависимости от сорта культуры УР составил от 63 до 69%. Такой высокий уровень объясним низкой стоимостью обработки и высокой урожайностью картофеля с 1 га. Варианты с применением химических фунгицидов имели меньшее значение рентабельности в сравнении с биофунгицидами, несмотря на большую эффективность при защите от альтернариоза картофеля.

Это связано высокой стоимостью обработки 1 га и низким инфекционным фоном, который не оказал значительного влияния на урожайность культуры. Уровень рентабельности в зависимости от сорта и варианта опыта с фунгицидами химического класса находился в диапазоне от 54 до 61%.

Уровень хозяйственной рентабельности дополнительных затрат (%) –показывает сколько прибыли от реализации продукции приходится на 1 рубль затрат в производстве. По данному показателю лучшие результаты получены также в вариантах с биофунгицидами в период вегетации.

Оценивая УР среди фунгицидов химического класса, выделим Браво, КС (3 л/га) в период вегетации на сортах Ред Скарлетт – 58%, Рокко 60% и Пикассо 61%.

По показателю уровень хозяйственной рентабельности дополнительных затрат предпочтителен в сложившихся условиях фунгицид Полирам ДФ, ВДГ (2,5 кг/га) на сортах Ред Скарлетт - 155%, Рокко – 165%. На сорте Пикассо по данному показателю отмечен Ридомил Голд МЦ, ВДГ (2,5 кг/га) и соответствует 155% (Таблица 4).

Таблица 4 — Экономическая эффективность применения средств защиты от болезней на различных сортах картофеля, в расчете на 1 га в среднем за 2012-2014 гг. (актуализировано на 2024 год)

					iii (antijas	попровине		тод)		
	$N_{ m Q}~\Pi/\Pi$	Сорт	Урожайность, т	Прибавка, т	Стоимость дополнительной продукции, руб.	Дополнительные материально- денежные затраты, руб.	Дополнительный доход, руб.	Окупаемость дополнительных затрат, руб.	Уровень рентабельности, %	Уровень хоз. рентабельности дополнительных затрат, %
	1		13,6	-	-	-	-	-	35,0	-
	2	3	15,1	1,6	15700	6938	8762	4,7	40,9	126,3
	3		15,2	1,7	16700	8295	8405	3,1	40,1	101,3
	4		14,9	1,3	13000	1502	11498	19,2	45,8	765,3
	5	Скарлетт	14,9	1,4	13600	3183	10417	39,1	44,0	327,2
	6	CK	17,5	4,0	39500	6787	32713	30,8	63,3	482,0
	7	Ред	16,6	3,0	30100	3111	26989	24,9	60,0	867,6
	8		18,9	5,4	53500	20958	32542	4,0	55,8	155,3
	9		19,4	5,8	58100	25085	33015	3,6	54,3	131,6
	10		19,8	6,3	62700	25101	37599	3,9	57,9	149,8
.PI	1	Рокко	13,8	-	-	-	-	-	36,4	-
іан	2		14,7	0,9	9000	7150	1850	2,7	35,7	25,9
Варианты	3		15,9	2,1	20600	7932	12668	3,8	45,4	159,7
B	4		14,7	0,9	9200	1890	7310	13,6	42,8	386,7
	5		14,7	0,9	8500	3228	5272	24,4	40,3	163,3
	6		18,4	4,6	46000	7796	38204	35,8	68,9	490,0
	7		17,0	3,2	32400	3131	29269	26,8	63,4	934,8
	8		19,6	5,8	57900	21826	36074	4,3	59,3	165,3
	9		19,9	6,1	60600	25131	35469	3,8	57,2	141,1
	10		20,3	6,5	64700	25131	39569	4,0	60,5	157,4
	1		13,9	-	-	-	-	-	37,4	-
	2		15,3	1,4	14100	7271	6829	4,2	41,2	93,9
	3		15,4	1,5	15300	8063	7237	2,8	41,3	89,8
	4		14,9	1,0	10100	2072	8028	14,9	44,5	387,5
	5	эссс	15,2	1,4	13700	3571	10129	39,4	45,9	283,6
	6	Пикассо	18,2	4,3	43000	8341	34659	33,5	66,3	415,5
	7	П	16,7	2,9	28600	3616	24984	23,6	60,1	691,0
	8		19,5	5,6	56100	22361	33739	4,2	58,0	150,9
	9		20,3	6,4	64000	25818	38182	4,0	60,0	147,9
	10		20,4	6,6	65900	25818	40082	4,1	61,5	155,3

Исходя из полученных показателей, выращивание картофеля в хозяйстве К ΦX «Азовцев» - рентабельно. С экономической точки зрения, вариант с применением

биологического фунгицида Альбит, ТПС в период вегетации является самым выгодным на всех сортах.

ЗАКЛЮЧЕНИЕ

- 1. В работе отмечено увеличение заболеваемости картофеля альтернариозом в годы исследования, что вызвано климатическими колебаниями. Чувствительны к этому заболеванию стареющие ткани культуры, чему свидетельствуют данные распространенности и развития в фазу образования клубней картофеля: Р, % в диапазоне 23–70% и R, % от 0,25% до 5,25% в зависимости от года и сорта.
- 2. В засушливые годы и с недостаточным увлажнением произошло нарастание альтернариоза (Alternaria solani и Alternaria alternata (Fr.) Keissl)) на сортах картофеля разного срока созревания, в фазу активного роста ботвы (цветение) и далее по фазам онтогенеза культуры, в связи с чем необходимы защитные мероприятия. На изучаемых сортах картофеля в фазу образования клубней установлена тесная корреляционная зависимость между тепло- и влагообеспеченностью растений, а также распространенностью (P, %) и развитием (R, %) альтернариоза и составила соответственно (0,68) и (0,21). Прямая корреляционная взаимосвязь выявлена на всех изучаемых сортах между этими показателями. Абиотические условия ослабляют растения и предрасполагают к возникновению альтернариоза и сопутствующих болезней картофеля.
- 3. Отмечена тесная прямая корреляционная зависимость (0,99) между показателями P, % и R, % альтернариоза на всех этапах онтогенеза на сортах картофеля в вариантах опытов. Жаркая и сухая погода середины лета в годы исследований способствовала нарастанию заболевания в период формирования урожая. Выявлено поражение нижних стареющих листьев. Установлена обратная корреляционная связь между урожайностью картофеля и поражаемостью патогеном. Проведенный клубневой анализ картофеля сортов Ред Скарлетт, Рокко и Пикассо показал, что уровень поражения патогенами соответствовал допустимым значениям ГОСТ Р 55329–2012 и ГОСТ 33996–2016 І репродукции.
- 4. Чистая культура гриба *А. alternata* выделенная с сорта Рокко, оказалась более спороносной, чем с других объектов Ред Скарлетт и Пикассо. Установлены штаммы гриба, отличающиеся морфолого-культуральными признаками. Различия, обнаруженные у штаммов, свидетельствуют о сложном внутривидовом составе этого гриба.
- 5. Проведен анализ обширных данных по динамике распространенности и развития альтернариоза на картофеле в Воронежской области, за период с 1969 по 2023 годы. Выявлена цикличность проявления альтернариоза картофеля, установлены периоды депрессии (1991–2003; 2017 по настоящий момент) и роста (1976–1990; 2004–2016) распространенности и развития болезни, которые повторяются через каждые 12-14 лет. На основе полученных нами значений в условиях запада лесостепи Воронежской области распространенность патогена

оказалась сопоставима со значениями по области (18–22,7%) и составила 14–28% на контрольных вариантах.

- 6. Опираясь на полученные результаты исследований, в годы неблагоприятные для развития альтернариоза (недостаточного увлажнения и засушливые) целесообразно применение биологических препаратов Альбит, ТПС (0,1 л/т; 0,05 л/га) и Гамаир, СП (0,003 кг/т; 0,06 кг/га). Напротив, при условиях, способствующих развитию и нарастанию заболевания, необходимо использовать химические фунгициды Максим, КС (0,4 л/т); ТМТД, ВСК (5 л/т); Ридомил Голд МЦ, ВДГ (2,5 кг/га); Полирам ДФ, ВДГ (2,5 кг/га) и Браво, КС (3 л/га) как самостоятельно, так и в комплексе с биологическими, строго соблюдая сроки применения и интервалы между обработками.
- 7. Расчет экономической эффективности показал, что наиболее рентабельными в годы исследований варианты с применением в период вегетации биофунгицида Альбит, ТПС 0,05 л/га как минимум двухкратно со средней урожайностью по сортам 18 т/га и химических препаратов Полирам ДФ, ВДГ 2,5 кг/га 19,3 т/га; Ридомил Голд МЦ, ВДГ 2,5 кг/га 19,9 т/га и Браво, КС в норме 3π /га 20,2 т/га.

РЕКОМЕНДАЦИИ ПРОИЗВОДСТВУ

На основе результатов проведенных нами исследований рекомендуем осуществлять защиту картофеля раннего (Ред Скарлетт), среднераннего (Рокко) и позднего (Пикассо) сортов созревания в условиях лесостепи Воронежской области, используя биологические и химические фунгициды.

- 1. В качестве протравителей клубней перед посадкой необходимо проводить обработку посадочного материала биологическим препаратом Альбит, ТПС (0,1 л/т) или Гамаир, СП (0,003 г/т) для профилактики и предотвращения поражения культуры альтернариозом, фитофторозом и ризоктониозом, которые длительное время способны сохраняться в почве и инфицировать картофель при прорастании. Из фунгицидов, относящихся к химическому классу, для обработки клубней перед посадкой рекомендуем препараты Максим, КС (0,4 л/т) и ТМТД, ВСК (5 л/т), которые способны защитить культуру на ранних этапах развития до периода цветения в засушливых условиях и условиях недостаточного увлажнения.
- 2. В годы с недостаточным увлажнением или засушливые при низком инфекционном фоне альтернариоза (менее 1% в фазу бутонизации) и с целью профилактики патогена до проявления видимых симптомов целесообразно применять в период вегетации фунгициды в фазу активного роста ботвы и созревания биологические фунгициды: Альбит, ТПС в норме 0,05 л/га и Гамаир, СП в норме 0,06 кг/га для предотвращения распространенности и развития патокомплекса, в том числе альтернариоза картофеля. Также в период вегетации в качестве профилактики по здоровым растениям или при проявлении симптомов альтернариоза целесообразно применять химические фунгициды: Браво, КС в норме 3 л/га; Полирам ДФ, ВДГ в норме 2,5 кг на 1 га; Ридомил Голд МЦ, ВДГ 2,5 кг/га, которые способны предотвратить эпифитотийное развитие патогенов,

включая альтернариоз, а также сохранить потенциальный урожай и качество продукции, соответствующее требованиям ГОСТ.

ПЕРСПЕКТИВЫ ДАЛЬНЕЙШЕЙ РАЗРАБОТКИ ТЕМЫ

Дальнейшие разработки по теме диссертационного исследования будут направлены на тщательное изучение штаммов гриба *A. alternata*; проведение искусственного заражения серии районированных сортов картофеля с целью выявления наиболее устойчивых сортов, а также обоснование и разработка схем своевременного применения биологических и химических фунгицидов против альтернариоза в условиях Воронежской и сопредельных областей.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ АВТОРОМ ПО ТЕМЕ ДИС-СЕРТАЦИИ

В изданиях, рекомендованных ВАК РФ

- 1. **Мельникова Е.С.** Пути снижения вредоносности альтернариоза картофеля / Е.С. Мельникова, Е.А. Мелькумова, М.А. Кузнецова // Вестник Воронежского государственного аграрного университета. − 2011. − № 4(31). − С. 30-32.
- 2. **Мельникова Е.С.** Морфолого-культуральная характеристика альтернариоза картофеля в чистой культуре / Е.С. Мельникова, Е.А. Мелькумова // Вестник Воронежского государственного аграрного университета. − 2015. − № 4(47). − С. 34-38.
- 3. **Мельникова Е.С.** Вредоносность альтернариоза картофеля как основного биологического ресурса агроценоза Воронежской области / Е.С. Мельникова, Е.А. Мелькумова, А.М. Мохаммад // Вестник Воронежского государственного аграрного университета. -2016. № 1(48). С. 29-34.
- 4. **Мельникова Е.С.** Основные вредоносные болезни картофеля в Центральном Черноземье и пути их ограничения / Е.С. Мельникова, Е.А. Мелькумова // Вестник Воронежского государственного аграрного университета. − 2024. − Т. 17, № 1(80). − С. 32-41.

В сборниках научных трудов, научных докладов, материалов конференций

- 5. **Мельникова Е.С.** Эффективность схем применения фунгицидов одновременно против вредоносных болезней картофеля / Е.С. Мельникова // Инновационные технологии и технические средства для АПК: Материалы Всероссийской научно-практической конференции молодых ученых и специалистов, посвященные 100-летию Воронежского государственного аграрного университета имени императора Петра I, Воронеж, 28–29 ноября 2011 года. Часть I. Воронеж: Воронежский государственный аграрный университет им. императора Петра I, 2011. С. 155-160.
- 6. **Мельникова Е.С.** Защита картофеля от альтернариоза в Нечерноземной зоне РФ / Е.С. Мельникова, Е.А. Мелькумова, М.А. Кузнецова // Агротехнический метод защиты растений от вредных организмов: Материалы V международной научно-практической конференции, Краснодар, 13–17 июня 2011 года. Краснодар: Кубанский государственный аграрный университет, 2011. С. 108-110.
- 7. Мелькумова Е.А. Биолого-экологическая характеристика вредоносных болезней картофеля / Е.А. Мелькумова, **Е.С. Мельникова**, Ю.А. Нестерова // Современные проблемы интродукции и сохранения биоразнообразия растений:

- Материалы 2-й Международной научной конференции, посвященной 75-летию Ботанического сада им. профессора Б.М. Козо-Полянского и 100-летию со дня рождения профессора С.И. Машкина, Воронеж, 03–05 октября 2012 года / ФГБОУ ВПО "Воронежский государственный университет", Ботанический сад им. Б.М. Козо-Полянского, Совет ботанических садов Центра европейской части России. Воронеж: Роза ветров, 2012. С. 275–277.
- 8. **Мельникова Е.С.** Комплексная защита картофеля от вредных объектов / Е.С. Мельникова, С.В. Дорогобед, Е.А. Мелькумова // Молодежный вектор развития аграрной науки: Материалы 72-й национальной научно-практической конференции студентов и магистрантов, Воронеж, 01 апреля 31 2021 года / Воронежский государственный аграрный университет имени императора Петра І. Том Часть IV. Воронеж: Воронежский государственный аграрный университет им. императора Петра I, 2021. С. 211-214.
- 9. **Мельникова Е.С.** Оперативное решение защиты картофеля от комплекса распространенных и вредоносных болезней / Е.С. Мельникова, Е.А. Мелькумова // Современная микология в России: Материалы III Международного микологического форума, Москва, 14—15 апреля 2015 года. Том 5. Москва: Общероссийская общественная организация "Общественная национальная академия микологии", 2015. С. 198-199.
- 10. **Мельникова Е.С.** Защита картофеля от вредоносных заболеваний в условиях Воронежской области / Е.С. Мельникова, Е.А. Мелькумова // Актуальные проблемы агрономии современной России и пути их решения: материалы Международной научно-практической конференции, посвященной 105-летию факультета агрономии, агрохимии и экологии, Воронеж, 04–05 декабря 2018 года. Часть І. Воронеж: Воронежский государственный аграрный университет им. императора Петра I, 2018. С. 285-290.
- 11. **Мельникова Е.С.** Использование биопрепаратов для защиты картофеля против альтернариоза / Е.С. Мельникова, Е.А. Мелькумова // Защита растений от вредных организмов: Материалы IX международной научно-практической конференции, Краснодар, 17–21 июня 2019 года. Краснодар: Кубанский государственный аграрный университет имени И.Т. Трубилина, 2019. С. 163-165.
- 12. **Мельникова Е.С.** Защита картофеля от болезней в условиях Черноземья / Е.С. Мельникова // Аграрник. -2019. №10(102). С. 20–21.
- 13. **Мельникова Е.С.** Использование фунгицидных протравителей на картофеле в условиях Центрального Черноземья / Е.С. Мельникова // Защита картофеля. -2020. -№ 1. C. 9-10.
- 14. **Мельникова Е.С.** Защита картофеля от микозов в Центральном Черноземье / Е.С. Мельникова // Биоразнообразие и устойчивость естественных и искусственных растительных сообществ: Материалы Всероссийской молодежной научно-практической конференции, Воронеж, 28 апреля 2022 года / Отв. редактор Ю.В. Чекменева. Воронеж: Воронежский государственный лесотехнический университет им. Г.Ф. Морозова, 2022. С. 74-80.
- 15. **Мельникова Е.С.** Вредоносные болезни картофеля в современных условиях Черноземья / Е.С. Мельникова // Известия Воронежского отделения Русского ботанического общества: Сборник статей. Воронеж: "Цифровая полиграфия", 2023. №10. С. 145-148.

Просим принять участие в работе диссертационного совета 35.2.008.03 или выслать Ваш отзыв на автореферат в двух экземплярах с заверенными подписями по адресу: 394087, г. Воронеж, ул. Мичурина, 1, ауд. 169, ученому секретарю Высоцкой Е.А., e-mail: Murka1979@mail.ru