На правах рукописи

Резвякова Светлана Викторовна

Теоретические и практические основы повышения биоресурсного потенциала устойчивости садовых культур к температурным факторам

Специальность 03.02.14 – биологические ресурсы

Автореферат диссертации на соискание ученой степени доктора сельскохозяйственных наук

Воронеж, 2016

Работа выполнена в ФГБОУ ВО «Орловский государственный аграрный университет»

Научный консультант:

доктор сельскохозяйственных наук, профессор Гурин Александр Григорьевич

- Официальные оппоненты:

 Трумов Юрий Викторович, доктор сельскохозяйственных наук, профессор, ФТБНУ ВНИИ садоводства им. И.В. Мичурина, директор;

 Бадокимению Сергей Николаевич, доктор сельскохозяйственных наук, профессор, Коминский опорышій пунат ФТБНУ «Всероссийский селекционно-
- технологический институт садоводства и питоминководства», заведующий;
 Гурьянова Юлия Викторовия, доктор сельскохозяйственных наук, доцент, ФГБОУ ВО «Мичуринский государственный аграрный университет»,

Ведущая организация: ФГБОУ ВО «Кабардино-Балкарский государственный аграрный университет им. В.М. Кокова»

Защита диссертации состоится «16» июня 2016 г. в 12 часов на заседани диссертационного совета Д 22.0.010.07 при Воронежском государственном аграрном университете им. императора Петра I по адресу; 394087 г. Воронеж, ул. Мичурина, I, Воронежский ГАУ; факс: (473) 253-86-51; Е-mail: olga.koltsova.52@mail.ru

С диссертацией и авторефератом можно ознакомиться в библиотеке Воронежского государственного аграрного университета им. императора Петра I и на официальном сайте университета: ds.vsau.ru, с авторефератом - на сайтах ВАК Министерства образования и науки РФ - www.vak2.ed.gov.ru и ВГАУ - ds.vsau.ru

Автореферат разослан « ».

2016 г.

Отзывы на автореферат в двух экземплярах, заверенные и скрепленные гербовой печатью, просим направлять ученому секретарю диссертационного совета.

Ученый секретарь диссертационного совета Д 220.010.07 кандидат сельскохозяйственных наук

May &

Кольцова О.М.

Общая характеристика работы

Актуальность проблемы. В рационе питания человека наряду с белковой пищей должны преобладать высоковитаминные продукты, основу которых составляют плоды и ягоды. К сожалению, начиная с 90-х годов 20 столетия, в России значительно сократились площади, занятые садами. При этом существенно снизилось видовое и сортовое разнообразие. Валовой сбор яблок к 2013 г. снизился до 1,4 млн. т против 1,79 млн. т в 2005 году (Муханин, 2013). В «Стратегии развития садоводства и питомниководства в Российской Федерации на период до 2020 года» поставлена задача обеспечить валовое производство отечественной плодово-ягодной продукции к 2020 г. на уровне 4,13 млн. т.

Одной из причин сокращения площадей являются выпады деревьев в суровые зимы 1968/69, 1978/79, 1984/85, 1993/94, 1996/97 и 2005/06 годов (Кашин, 1995; Седов, 2009; Кичина, 2011). Перспективной в сложившихся условиях является стратегия адаптивной интенсификации садоводства, которая основывается на рациональном использовании и обновлении биологических ресурсов (Жученко, 2000; Савельев, 2002; Седов, 2011).

В положительном решении проблемы сохранения и пополнения биоресурсов садовых культур немаловажная роль отводится использованию генотипов, у которых зимостойкость сочетается с наличием у сортов яблони иммунности к парше, сортов груши — устойчивости к парше, буроватости и септориозу, сливы - устойчивости к клястероспориозу. Возделывание таких комплексно устойчивых к стрессорам зимнего периода и болезням сортов позволит повысить экономическую эффективность отрасли садоводства и получить безопасную для здоровья человека продукцию.

К настоящему времени отечественными и зарубежными учеными достигнуты определенные успехи по изучению природы зимостойкости (Красавцев, 1974; Weiser, 1970; Levitt, 1972; Эчеди, 2005; Тюрина, Вартапетян, Эчеди, 2003; Джигадло, 2006;), разработке методов определения данного признака (Туманов, 1935; Щербинин, Соловьева, Починок, 1981; Леонченко, Ханина, 1983; Лобанов, 1987...Бутенко и др., 2008) и созданию зимостойких сортов (Долматов, 1997; Савельев, 1998; Кичина, 2011; Красова. 2012; Седов, 2013). Однако большинство авторов отмечает, что не снижается актуальность задачи увеличения биологического разнообразия и повышения зимостойкости садовых

культур, что достигается методами селекции и агротехническими приемами.

Нет единой точки зрения на механизмы формирования зимостойкости, корреляционные зависимости данного признака от физиологических показателей, климатических и эдафических факторов в естественных условиях. Метод моделирования экстремально низких температур в лабораторных условиях в камерах искусственного климата позволяет за 2-3 года выявить растения с генетически детерминированной максимальной устойчивостью к морозам по каждому компоненту в отдельности и по их комплексу. Но имеющийся опыт единичных научно-исследовательских учреждений не может быть использован механически в связи с различием в технических возможностях, исходном материале, критериях оценки при массовом отборе в гибридных популяциях (Кичина, 1999). По заключению самих авторов, существующая методика отражает лишь основные принципы работы и требует дальнейших уточнений (Тюрина, Гоголева, Трунова, 1995). Необходимы дальнейшие углубленные исследования по совершенствованию методов оценки садовых культур по устойчивости к низкотемпературным стрессорам зимы (Дорошенко, Рязанова, 1998; Кичина, 2011).

Повысить зимостойкость биоресурсов садоводства, кроме методов адаптивной селекции, можно посредством экологически безопасных приемов, таких как внесение в почву природных материалов и обработка растений биопрепаратами. В литературных источниках практически отсутствуют сведения по влиянию цеолита Хотынецкого месторождения Орловской области на экологическую устойчивость популяций ягодных культур к температурным стресс-факторам зимнего и вегетационного периодов.

Эффективное решение вышеназванных проблем является научной основой управления биологическими ресурсами, а также весьма актуально для рационального использования биопотенциала и увеличения биоразнообразия садовых ценозов в условиях развития адаптивного ресурсосберегающего садоводства.

Цель и задачи исследований. Целью настоящих исследований является подбор сортов для рационального использования и обновления биологических ресурсов садоводства, и разработка экологически безопасных приемов повышения устойчивости растений к температурным факторам.

Для достижения цели были поставлены следующие задачи:

- 1. Проанализировать многолетнюю динамику температур в зимний период и выявить лимитирующие компоненты и их пороговые значения для популяций садовых культур в природно-климатических условиях ЦЧР.
- 2. Модифицировать методику ускоренной оценки сообщества садовых культур по зимостойкости в лабораторных условиях методом искусственного промораживания.
- 3. Выявить особенности толерантной стратегии выживания генотипов популяции *Malus domestica B*. в суровых условиях низкотемпературного стресса и установить корреляционные зависимости формирования зимостойкости от некоторых физиологических показателей.
- 4. Исследовать биоресурсный потенциал садовых культур разного эколого-географического происхождения по устойчивости к температурным стрессорам зимы.
- 5. Определить закономерности наследования компонентов зимостойкости гибридными популяциями Malus domestica B. и Pyrus communis L.
- 6. Разработать агротехнические мероприятия, повышающие адаптивный потенциал плодоносящих популяций ягодных культур и выход стандартных саженцев груши в питомнике.

Поставленные цель и задачи исследований соответствуют «Стратегии развития садоводства и питомниководства Российской Федерации на период до 2020 года».

Научная новизна. Впервые установлены характер, нижние пределы, частота встречаемости, корреляционные зависимости основных лимитирующих низкотемпературных стрессоров зимы в условиях ЦЧР. Выявлены два наиболее вредоносных для популяций садовых культур повреждающих фактора.

Модифицирована и усовершенствована методика искусственного промораживания растений в лабораторных условиях, основные результаты отражены в «Программе и методике сортоизучения плодовых, ягодных и орехоплодных культур» (Орел, 1999). Разработанная технология ускоренного отбора толерантных генотипов популяций рода *Malus M*. (Кичина, 1988) адаптирована для аналогичного отбора в популяциях рода *Pyrus L*. в соответствии с биологией культуры, сублетальными температурами в течение зимы, учетом степени и характера повреждения тканей.

Выявлена тесная связь (0,91-0,92***) между степенью подмерзания одних и тех же генотипов популяции *Malus domestica B*. в раннем и плодоносящем возрасте при аналогичных режимах искусственного промораживания. Это доказывает правомочность отбора зимостойких генотипов в раннем возрасте в лабораторных условиях.

Выявлены корреляционные зависимости формирования зимостойкости от низкочастотного электрического сопротивления и накопления фенольных соединений в коре однолетних веток популяции *Malus domestica B.*

Приоритетными являются результаты комплексного анализа биологических ресурсов *Malus domestica B., Pyrus communis L.* и *Prúnus doméstica L.* разного эколого-географического происхождения по устойчивости к температурным стрессорам зимы, ранее не исследованных по данному признаку.

Теоретическая и практическая значимость. Проведен анализ по зимостойкости сообщества генетически разнородных исходных форм яблони (*M. domestica, M. baccata, M. floribunda*) и груши (*P. communis, P. ussuriensis, P. bretschneideri*) посредством искусственного промораживания гибридных популяций. Изучено наследование компонентов зимостойкости в созданных популяциях. Выделены высокозимостойкие генетические источники и доноры.

Сравнительный анализ биоресурсного потенциала садовых культур различного эколого-географического происхождения позволил выявить генотипы яблони, груши и сливы, обладающие всеми компонентами зимостойкости на уровне высокозимостойких и зимостойких районированных сортов. Выделены сорта с выдающейся морозоустойчивостью вегетативных почек и тканей по отдельным компонентам зимостойкости и их комплексу.

Трансгрессивные генотипы яблони №№ 4060, 4108, 4245, 4318, 4334 и груши №№ 62134, 62152, 62173, 62397 и 62446 являются основой обновления биоресурсов этих пород.

Доказано положительное влияние цеолита Хотынецкого месторождения на повышение зимостойкости популяций ягодных культур и биопрепарата Эмистим в питомнике с популяцией груши.

Изданы методические рекомендации для научных сотрудников и аспирантов «Модификация и дополнения к методике ускоренной оценки плодовых культур на зимостойкость», рекомендации для специалистов АПК, садоводов-фермеров и любителей «Подбор зимостойких сортов плодовых культур для адаптивного садоводства» и «Основные типы повреждений плодовых культур в период зимовки и мероприятия по их восстановлению».

Результаты научной работы используются в преподавании курсов «Экология» и «Мониторинг окружающей среды» для студентов факультета агробизнеса и экологии ФГБОУ ВО «Орловский государственный аграрный университет».

Методология и методы исследований. В процессе планирования и выполнения диссертационной работы автор руководствовался общенаучной методологией, базирующейся на системном подходе, общелогических, эмпирических и теоретических методах исследования с систематизацией научных знаний.

Эксперименты по искусственному промораживанию выполняли по методике М.М. Тюриной и Г.А. Гоголевой (1978) в термокамере (шкафу) Т-12,5/01 и климатермокамере "Фейтрон-2101". Методические эксперименты проводили в трехкратной повторности в течение 2-х лет. В каждой повторности по 30 однолетних веток.

Низкочастотное сопротивление коры однолетних веток яблони измеряли на частоте 500 Гц прибором на базе переоборудованного реохордного моста Р-38 и датчика сопротивления с расстоянием между измерительными иглами и глубиной погружения 1,5 мм. Повторность 5-кратная (Методические указания. - Л., 1972).

Содержание антоцианов в коре однолетних веток яблони в связи с формированием морозоустойчивости определяли на приборе УХЛ-42 по методике М.А. Соловьевой и А.П. Пасичного (1973).

Содержание хлорофилла в листьях определяли спектрометрическим методом, интенсивность транспирации – с помощью торсионных весов.

Устойчивость пыльцы популяций ягодных культур к весенним заморозкам оценивали с помощью электронного сканирующего микроскопа.

Положения, выносимые на защиту:

- Системный и комплексный подходы к анализу биоресурсного потенциала садовых культур по зимостойкости;
- Формирование зимостойкости сообщества садовых культур в зависимости от генетического и природно-ресурсного потенциала;
- Корреляционные зависимости формирования зимостойкости сортов популяции $Malus\ domestica\ B$. от низкочастотного электрического сопротивления и накопления веществ фенольной природы антоцианов в коре однолетних веток;
- Подбор пород и сортов садовых культур разного эколого-географического происхождения для рационального использования и

воспроизводства биологических ресурсов в условиях развития адаптивного биологизированного садоводства;

- Влияние цеолита Хотынецкого месторождения на зимостой-кость популяций ягодных культур.
- Влияние биопрепарата Эмистим на производство саженцев груши в питомнике.

Степень достоверности и апробация результатов. Статистическая обработка результатов выполнена методами дисперсионного и корреляционного анализов (Волков, 1976; Доспехов, 1985) с использованием программы «Статистика».

Основные результаты исследований доложены и представлены на международных конференциях по проблемам садоводства (Орел, 1996, 2000, 2001, 2003, 2005, 2007, 2008, 2009; Краснодар, 1999; Минск, 2000; 2001; Димитровград (Ульяновская ГСХА), 2007; Москва, 2009; 2013), Всероссийском совещании «Селекция на зимостойкость плодовых и ягодных культур» (Москва, 1992), научно-методическом совещании "Проблемы адаптивного садоводства России" (Москва, 1994), научно-методической конференции «Совершенствование сортимента и технологии возделывания груши» (Орел, 1997), на научнопрактических конференциях (Орел, 1993, 1994; Барнаул, 1997; Киров, 1998, Владикавказ, 2004, 2012; Орел, 2004, 2005, 2013; Курск, 2005, 2009; Нальчик, 2006, 2012; Белгород, 2009, 2014), Мичуринских чтениях (Мичуринск, 1992, 1994, 1995, 1997, 1998, 2000, 2003).

Декларация конкретного личного участия диссертанта в разработке результатов, вынесенных на защиту. Автором диссертации разработана и осуществлена программа исследований, самостоятельно проведены эксперименты, анализ и интерпретация данных. Диссертант принимал личное участие в проведении исследований на всех этапах - от поиска до завершения и оформления работы.

Публикации. За период выполнения исследований опубликовано 118 научных работ, в том числе 51 по теме диссертации. В том числе 24 публикации в изданиях, рекомендованных ВАК РФ, 3 монографии, 2 методические рекомендации, 1 рекомендация производству.

Структура и объем работы. Диссертация состоит из введения, семи глав, заключения, рекомендаций, списка литературы и приложений. Изложена на 385 страницах машинописного текста, включает 69 таблиц и 55 рисунков в тексте, 2 таблицы, описание новых сортов яблони, груши и сливы, 2 акта внедрения в приложении. В списке литературы представлено 488 источников, в т. ч. 52 иностранных.

Благодарности. Автор выражает глубокую признательность академику РАН Е.Н. Седову, докторам сельскохозяйственных наук Н.Г. Красовой, Е.А. Долматову и Е.Н. Джигадло за предоставленные объекты исследований, кандидату сельскохозяйственных наук С.М. Мотылевой за помощь в выполнении исследований с использованием электронного сканирующего микроскопа.

Содержание работы Условия, объекты, схемы экспериментов

Исследования проводили во Всероссийском НИИ селекции плодовых культур и МУП «Коммунальник» г. Орла в 1989-2013 гг. Почвенно-климатические условия в целом благоприятны для возделывания адаптированных сортов садовых культур. Климат умеренно теплый с влажным летом и холодной зимой. Средняя годовая температура воздуха +4,9° С. Продолжительность вегетационного периода 180 дней, сумма эффективных температур выше 5°С-1750°. Продолжительность безморозного периода 146 дней. Сумма осадков в среднем за год составляет 571 мм. Опытные насаждения заложены на участках с серыми лесными почвами, с содержанием гумуса 3-4 %, мощностью гумусового горизонта 30-35 см.

Объектами исследований послужили:

плодоносящие садовые культуры, а именно: 82 сортообразца яблони, 138 - груши, 22 - сливы;

5,5 тыс. сеянцев яблони и 1,7 тыс. сеянцев груши двухлетнего возраста различных гибридных популяций;

агроэкосистемы ягодных культур;

агроэкосистема питомника груши.

Полевой опыт со смородиной черной заложен по схеме -0.7×3 м. Размер делянки - 14 м². Площадь, занимаемая опытом - 884,8 м². Цеолит вносили из расчета 3, 8, 16 и 24 т/га на фоне полного минерального удобрения $N_{90}P_{90}K_{90}$. Районированный сорт смородины черной Кипиана.

Полевой опыт с крыжовником заложен по схеме посадки 0,7x3 м. Размер делянки — 14 м². Цеолит вносили в расчете 8, 16 и 24 т/га на фоне полного минерального удобрения $N_{90}K_{90}P_{90}$. Крыжовник - элитный сеянец (ЭЛС) 24-15-21 (Африканец х Гроссуляр).

Полевой опыт с малиной заложен по схеме 0.5x2.8 м. Площадь опытного участка -337.5м². Цеолит вносили в расчете 2, 10 20 и 30

 ${
m T/г}$ а на фоне полного минерального удобрения $N_{60}K_{90}P_{90.}$ Районированный сорт малины Спутница.

Полевой опыт с земляникой заложен по схеме - 0,25х0,8 м. Размер опытной делянки - 0,75 м 2 . Размер защитных полос между делянками - 0,15 м 2 . Дозы внесения цеолита из расчета 2, 5, 10 и 15 т/га; доза минеральных удобрений - $N_{120}P_{60}K_{180}$. Новые сорта селекции ТСХА им. К.А. Тимирязева Богема, Былинная и Мамочка.

Опыты с ягодными культурами заложены в трехкратной повторности, делянки в повторности расположены рендомезировано. Количество учетных растений в делянке — 10 шт. Цеолит, аммиачную селитру, двойной суперфосфат и сернокислый калий вносили разово при закладке опытов. Дозы удобрений оптимальные для ягодных культур в соответствии с требованиями зональной агротехники. В качестве контроля использовали вариант без добавления в почву цеолита и минеральных удобрений. Агротехника общепринятая для ягодных культур.

Полевой опыт с популяцией груши заложен в МУП «Коммунальник» в 2010 году в трехкратной повторности, по 30 растений в повторности. Схема размещения растений однорядная, с расстоянием между рядами 90 см, между растениями в ряду — 20-25 см, что составляет 44,4 тыс. шт. на 1 га, согласно существующим рекомендациям (1975). Уход в питомнике проводился в соответствии с общепринятой агротехникой и технологией. Обработку биопрепаратом Эмистим проводили ежегодно три раза за сезон: в первой половине мая, июня и июля ранцевым опрыскивателем. В качестве подвоев использовали популяцию груши обыкновенной. Прививали окулировкой районированный сорт Памяти Яковлева.

Результаты исследований

Методологический подход к анализу биоресурсов садовых культур по устойчивости к низкотемпературным стрессорам зимы

(на примере видов Malus domestica B. и Pyrus communis L.)

Обоснование выбора режимов искусственного промораживания

Для составления программы испытания биоресурсов садовых культур по зимостойкости в течение зимы была проанализирована динамика минимальных и максимальных температур зимнего периода за ряд лет, поскольку объектами исследований являются многолетние сообщества. Мониторинг низкотемпературных стресс-факторов зимне-

го периода является научной основой моделирования их в лабораторных условиях в камерах искусственного климата.

Частота зим по морозности приведена в таблице 1. За период с 1975 по 2010 годы зимы с суммой отрицательных температур до 800° С составили 61,11 %, с диапазоном температур от 801 до 1000° С -13,89%, и больше 1000° С -25,00 %.

Таблица 1 - Частота зим по морозности за период 1975-2010 гг., %

Сумма отрицательных температур						
до 800°C 801-1000°C				Больше 1000°C		
ШТ.	%	ШТ.	%	ШТ.	%	
22	61,11	5	13,89	9	25,00	

Зимы с минимальной температурой воздуха ниже -30° C составили 38,89 % (14 зим за период с 1975 по 2010 гг.). В том числе в зимы с суммой отрицательных температур до 800° C -35,71% (5 зим), больше 1000° C -64,29% (9 зим). Зимы с минимальной температурой ниже -35° C составили 5,56% (1996/97 и 2005/2006 гг.).

Показатели минимальной температуры воздуха и суммы отрицательных температур не имеют между собой отчетливо выраженной прямой зависимости. Так, в зимы с суммой отрицательных температур больше 1000°С может и не быть мороза до -35°С (1979/80, 1995/96, 2002/2003 и 2009/2010 гг.) и, наоборот, довольно сильные морозы случаются в зимы с небольшой суммой отрицательных температур (1994/95, 1996/97, 1998/99 и 2001/2002 гг.). Расчет коэффициента корреляции и его существенности показал, что связь между анализируемыми показателями средняя (таблица 2).

Таблица 2 -. Коэффициент корреляции между показателями

Признаки	Минималь-	Минимальная	Продолжи-	Количество
	ная темпе-	температура	тельность	дней с оттепе-
	ратура	на поверхно-	зимы в	лями, декабрь
	воздуха, °С	сти снега, °С	днях	– февраль
Сумма отрица-	-0,61***	-0,65***	0,50*	-0,70***
тельных темпе-				
ратур, °С				

При комплексном анализе зимних условий за 36 лет можно выделить зимы мягкие, суровые и нормальные, которые соответствуют

среднемноголетним значениям (таблица 3). Анализ результатов позволяет заключить, что каждая третья зима является испытанием для сообщества садовых культур в связи с исключительно суровыми условиями.

Таблица 3 - Результаты комплексного анализа зимних условий за период с 1975 по 2010г.

Характер зим	Показатели: сумма отрицательных температур, ми-	%
	нимальная температура воздуха и поверхности снега,	
	количество дней с оттепелями, перепады температур	
	в период оттепели	
Мягкие	1974/75, 1982/83, 1988/89, 1989/90, 1991/92, 2003/04,	25,0
	2006/07, 2007/08 и 2008/09 гг.;	
Суровые	1975/76, 1978/79, 1979/80, 1984/85, 1986/87, 1994/95,	33,3
	1995/96, 1996/97, 1998/99, 2002/03, 2005/06 и 2009/10	
	ΓГ.	
Нормальные	1976/77, 1977/78, 1980/81, 1981/82, 1983/84, 1985/86,	41,7
	1987/88, 1990/91, 1992/93, 1993/94, 1997/98,	
	1999/2000, 2000/01, 2001/02, 2004/05	

Интерес представляет также анализ частоты встречаемости повреждающих факторов согласно компонентам зимостойкости (таблица 4).

Таблица 4 - Частота встречаемости стресс-факторов зимнего периода, 1975-2010гг.

Температурные стресс-факторы зимы	Критические температуры	%
	отмечены в зимы	
− раннезимние морозы до -25-(-28)°С, конец	1998/99	2,8
ноября - начало декабря		
2 – максимальные морозы в закаленном	1975/76, 1978/79,	13,9
состоянии растений,	1986/87, 1995/96,	
январь, -37-(-39)°С	2005/06	
3 – морозы до -22-(-25)°С в период отте-	1993/94, 1994/95, 1996/97,	22,2
пели (февраль – март)	1997/98, 1998/99, 2000/01,	
	2004/05, 2007/08	
4 – возвратные морозы до -30-(-35)°С по-	1986/87, 1993/94	5,6
сле оттепелей (февраль – март)		

Наиболее вредоносными являются резкие перепады температур в период оттепелей (22,2 % зим). Критические минимальные температуры в середине зимы за последние 36 лет отмечены в 13,9 % случаев.

Таким образом, в условиях ЦЧР для анализа биоресурсов садовых культур по генетически детерминированной устойчивости к морозам в течение зимы в контролируемых условиях необходимо включать в программу четыре режима промораживания, согласно основным компонентам зимостойкости. Садовые растения чаще всего подвержены воздействию резких перепадов температур в период оттепелей и критическим морозам в середине зимы.

Дополнения к методике искусственного промораживания

Влияние продолжительности периода закаливания веток на морозоустойчивость популяции *Malus domestica B*.

Ветки яблони заготавливали в конце ноября в слабоморозную погоду и хранили при -3-(-5)°С до середины января, февраля и марта, что соответствует времени постановки экспериментов по искусственному промораживанию для определения уровня компонентов зимостойкости. При длительном хранении веток, морозоустойчивость тканей повышается, что можно объяснить перезакаливанием, связанным с оптимальными условиями прохождения 2-й фазы закаливания. Так, с увеличением периода закаливания до 3,5 месяцев подмерзание коры снизилось на 0,7-1,0 балла, древесины - на 0,5-0,7 балла. Разница доказана статистически.

У ряда сортов морозоустойчивость вегетативных почек сохраняется в течение зимы. Это связано не только с продолжительностью закаливания в идеальных условиях, но и с выходом яблони из органического покоя (февраль). Стабильность морозоустойчивости почек еще раз подтверждает дополнительную закалку, т.к. на ветках, срезанных в этот период в саду и прошедших стандартную закалку в течение недели при -5 и -10°C на каждом режиме почки повреждаются при -40°C сильнее, чем у прошедших закалку в течение 2,5-3,5 месяца (рисунок 1).

Таким образом, при длительном закаливании результаты воздействия сублетальной температурой не отражают истинную морозоустойчивость почек и тканей, степень повреждения занижена на 0,5-1,0 балла, причем сильнее у средне- и слабозимостойких сортов.

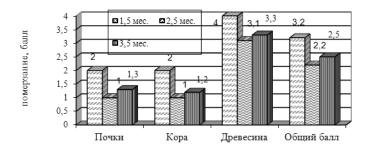


Рисунок 1 - Подмерзание яблони сорта Орлик при -40°C в зависимости от продолжительности периода закаливания побегов, 1994-1995 гг.

Влияние глубины и продолжительности искусственной оттепели на морозоустойчивость популяции *Pyrus communis L*.

Лабораторные эксперименты с популяцией яблони по изучению влияния оттепелей различной глубины и длительности позволили выявить, что скорость потери закалки связана с величиной температуры и продолжительностью оттепели, состоянием покоя и сортовыми особенностями (Булатова, 1973; Смагина, 1978; Габдулов, Тюрина, 1985). Аналогичные исследования на груше не проводились.

Неглубокие оттепели до $+2^{\circ}$ С в течение 3-5-10 дней и дальнейшее усиление мороза до -25° С даже в состоянии вынужденного покоя не позволяют четко дифференцировать сорта груши по способности сохранять устойчивость к морозу. Разница в степени подмерзания вегетативных почек и тканей прослеживается только при сравнении высокозимостойкого сорта Тонковетка и недостаточно зимостойкого в условиях Орловской области сорта Мраморная. Температура оттепели $+2^{\circ}$ С находится за нижним порогом развития груши и не может существенно отражаться на активизации ростовых процессов. Среднезимостойкие сорта Русановская и Комета при данном режиме только по морозоустойчивости древесины уступают Тонковетке, тогда как в природных условиях у них сильнее, чем у последней, подмерзают кора и почки (Красова, Резвякова и др., 1997).

Моделирование более глубокой оттепели $(+5^{\circ}\text{C})$ в течение 3-х дней и промораживание при -25°C при скорости снижения температуры 5°C в час вызывает повреждение почек и тканей средне- и слабозимостойких сортов. У высокозимостойкого сорта Тонковетка кора и камбий сохраняются здоровыми (рисунок 2).

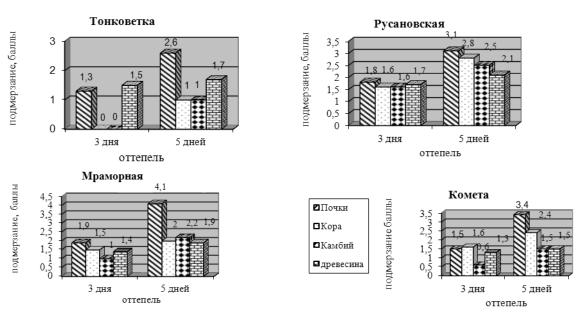


Рисунок 2 - Подмерзание сортов груши различной зимостойкости при -25° С в конце зимы после оттепели $+5^{\circ}$ С в зависимости от ее продолжительности

Чтобы более четко установить реакцию высокозимостойких и зимостойких сортов на резкие перепады температур в период оттепели и ранжировать их между собой по изучаемому признаку, следует увеличить ее продолжительность до 5 дней. При таком режиме размах варьирования степени повреждения почек по сортам составил 2,6-4,1 балла, коры – 1,0-2,8 балла, камбия – 1,0-2,5 балла, древесины – 1,5-2,1 балла, т.е. прослеживается весь спектр повреждений – от слабых до сильных. Следовательно, для определения устойчивости сортов груши к морозам до –25°С в период оттепели, оптимальным режимом искусственной оттепели является +5°С в течение 5-ти дней.

Морозоустойчивость популяций Malus domestica B. и Pyrus communis L. при совместном действии повреждающих факторов

При постановке экспериментов нет единого подхода к условиям содержания веток в морозильной камере: одни исследователи промораживают ветки, помещая их в полиэтиленовые пакеты, другие без них. В последнем случае на ветки воздействуют два стрессора — мороз и иссушение в результате обдува, т.к. в морозильной камере работает вентилятор для поддержания равномерной температуры. При совместном действии предельно низкой температуры и иссушения веток в морозильной камере степень подмерзания вегетативных почек и тканей выше, чем при воздействии только мороза (контроль) (таблица 5).

Таблица 5 - Подмерзание груши при совместном действии сублетальной температуры и иссушения. Промораживание при -36°C, 1997-1998 гг.

Сорт	Вариант	Подмерзание в баллах			
		почки	кора	камбий	древесина
Тонковетка	Мороз (К)	1,2	0,0	0,0	1,0
	К + иссушение	1,8	0,8	0,5	1,8
HCP _{O5}		0,4	-	-	0,4
Марсианка	Мороз (К)	2,5	1,0	0,0	1,3
	К + иссушение	3,1	1,5	0,5	2,0
HCP _{O5}		0,5	0,3	=-	0, 5
Русановская	Мороз (К)	1,8	1,9	0,4	2,3
	К + иссушение	2,6	2,6	1,5	2,5
HCP _{O5}		0,5	0,5	-	$F_{\phi} < F_{T}$
Маслянистая	Мороз (К)	3,8	3,8	2,5	3,0
летняя	К + иссушение	4,4	4,5	3,8	4,3

продолжение таблицы 5

HCP _{O5}		0,4	0,5	0,5	0,5
Комета	Мороз (К)	2,9	2,0	0,0	2,3
	К + иссушение	3,8	2,6	1,0	2,7
HCP _{O5}		0,4	0,4	-	$F_{\phi} < F_{T}$

Так, при промораживании сортов груши при совместном действии двух стресс-факторов подмерзание почек усиливается в зависимости от сорта в пределах 0,6-0,9 балла, коры — 0,5-0,8 балла, камбия — 0,5-1,3 балла, древесины — 0,4-1,3 балла. При этом ранжирование сортов по изучаемому признаку сохраняется в обоих вариантах, но морозоустойчивость сорта при содержании веток в защищенных от иссущения условиях завышена на 0,5-1,3 балла. Условия содержания испытуемого материала в морозильной камере следует отражать в методической части и учитывать при рекомендации сорта для использования в селекционных программах или производстве в конкретных природно-климатических условиях.

Последовательное наложение сублетальных температур в разные периоды зимы согласно компонентам зимостойкости значительно усиливает повреждение почек и тканей и позволяет выявить наиболее толерантные к сумме стресс-факторов генотипы. На примере сорта Бессемянка (рисунок 3) показана закономерность нарастания степени повреждения вегетативных почек и общего балла подмерзания, особенно при наложении режимов с оттепелями (столбцы 6 и 7).

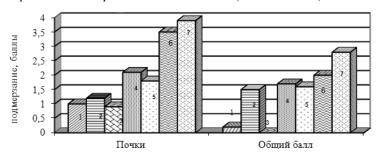


Рисунок 3 - Подмерзание (в баллах) сорта груши Бессемянка при разных режимах искусственного промораживания, 1995-1997 гг. Режимы:1 - (-30°С), декабрь; 2 - (-37°С), январь; 3 - оттепель, -25°С, февраль; 4 - повторная закалка, -35°С, март; 5- 1+2 режим; 6-1+2+3 режим; 7-1+2+3+4 режим.

При совместном действии температурных стрессоров после оттепелей (1+2+3-й компоненты) повреждались как сорта, не обладающие всеми компонентами зимостойкости в отдельности на уровне контрольных – Красавица Черненко, Марсианка, Январская, так и ряд сортов, обладающие ими – Орловская красавица, Памяти Яковлева.

Следовательно, при совместном действии повреждающих факторов зимнего периода немногие сорта способны выжить. Высокой комплексной морозоустойчивостью обладают сорта Барнаульская десертная, Белорусская поздняя, Груша от Сомова, Памятная и Перун.

Особенности толерантной стратегии выживания генотипов популяции яблони в условиях низкотемпературного стресса

Низкочастотное электрическое сопротивление (НЭС) коры однолетних веток яблони в связи с устойчивостью к морозам

Сорта яблони существенно различаются по показателю НЭС. Так, у зимостойких сортов Антоновка обыкновенная и Анис полосатый отмечены самые высокие показатели — $(1,26\text{-}1,28)\text{x}10^5$ Ом. У слабозимостойких сортов Лобо, Спартан, Ньютош, Бакстер и Томкинскинг НЭС было меньше $1,0\text{x}10^5$ Ом (таблица 6).

Таблица 6 - Показатель низкочастотного сопротивления и морозостойкость яблони в начале зимнего периода

Сорт	$R \times 10^{5}$	Ом, 1990 г.	Об-	R x	Общий	
			щий	1992 г.		балл
	Побе-	Промо-	балл	Побе-	Промо-	подмер-
	ги из	ражива-	под-	ги из	ражива-	зания
	сада	ние, -30°C,	мер- зания	сада	ние, -30°C,	
		ноябрь			ноябрь	
Антоновка	1,21	0,88	0,00	1,32	0,94	0,00
обыкно- венная						
Анис поло- сатый	1,32	0,88	0,00	1,24	0,98	0,30
Коробовка	1,20	1,04	0,00	1,19	1,04	0,00
Грушовка московская	1,05	1,00	0,12	1,12	1,05	0,00
Томкинс- кинг	0,95	0,63	0,80	1,17	0,74	0,70
Красное летнее	0,95	0,79	0,10	1,06	0,68	0,14

продолжение таблицы 6

Спартан	0,88	0,60	1,19	1,02	0,72	0,98
Бакстер	0,90	0,48	0,51	0,89	0,68	0,58
Лобо	0,74	0,58	1,00	0,72	0,55	0,98
Ньютош	0,76	0,51	0,78	0,64	0,48	0,92
HCP _{O5}	0,03	0,03	0,37	0,04	0,03	0,40
HCP _{O1}	0,04	0,04	-	0,05	0,04	-

Воздействие на ветки температурой -30° С в конце ноября вызвало снижение НЭС у слабозимостойких сортов — до $(0,48\text{-}0,63)\text{x}10^5$ Ом в 1990г., до $(0,48\text{-}0,74)\ \text{x}10^5$ Ом в 1992г. НЭС зимостойких сортов отмечено в интервале $(0,79\text{-}1,04)\ \text{x}10^5$ Ом в 1990г. и $(0,68\text{-}1,05)\ \text{x}10^5$ Ом в 1992г. Установлена отрицательная корреляционная зависимость между показателями НЭС коры однолетних веток яблони до промораживания и общим баллом подмерзания тканей после промораживания.

В 1990 г. коэффициент корреляции r=-0.82*, в 1992 г. r=-0.73**. Расчет коэффициента детерминации позволяет заключить, что в начале зимовки морозостойкость яблони на 53-67 % обусловлена показателем низкочастотного электрического сопротивления.

Содержание антоцианов в коре однолетних веток яблони в связи с морозоустойчивостью

Антоцианы — вещества фенольной природы, которые выполняют защитную функцию в устойчивости растений к переменным температурам (Соловьева, 1988). Они являются термоаккумулирующим и светозащитным барьером, преграждающим поток солнечных лучей к клеткам флоэмы, камбия и камбиальной зоны. В ноябре 1993 и 1994 гг. интенсивно проходил процесс накопления антоцианов у зимостойких сортов Куликовское, Антоновка обыкновенная, Анис полосатый, Память воину, Синап орловский и среднезимостойких сортов Ветеран и Орлик. Минимальное содержание антоцианов отмечено у зимостойкого сорта Красное летнее — 37,7 и 50,0 г/мл см. Общий балл подмерзания тканей при -30° С (1-й компонент) варьировал в 1993 г. в пределах 0,5-1,7, в 1994 г. — 0,3-1,5 балла (таблица 7). Коэффициент корреляции между содержанием антоцианов в коре и общим баллом подмерзания по годам составил r = -0,78* и r = -0,72*.

Таким образом, изученные косвенные методы отражают лишь общую тенденцию формирования зимостойкости в зависимости от

физиологических показателей и не позволяют достоверно ранжировать генотипы по устойчивости к морозу.

Таблица 7 - Содержание антоцианов (г/мл см) в коре однолетних веток и подмерзание яблони в ноябре, (баллы)

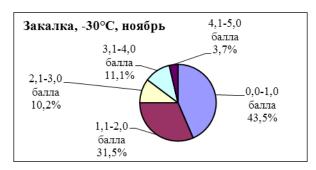
Сорт	1993 г.		1994 г.	
	антоцианы	подмерза-	антоциа-	подмерза-
		ние	ны	ние
Антоновка обыкновенная	67,5	0,8	62,7	0,5
Анис полосатый	70,0	0,5	64,8	0,3
Красное летнее	50,0	1,3	37,7	1,5
Ветеран	60,1	1,7	68,3	1,0
Куликовское	65,3	0,5	78,8	0,3
Орлик	57,4	1,5	68,7	1,0
Память воину	58,2	1,0	66,4	0,5
Синап орловский	65,6	0,9	61,3	0,7
HCP _{O5}	3,2	0,4	3,9	0,4

Сопряженность между признаками составляет 52-67 %. Эти методы уступают по надежности методу моделирования сублетальных температур в морозильных камерах.

Анализ биоресурсного потенциала садовых культур разного эколого-географического происхождения по устойчивости к температурным стрессорам зимы

Обобщив многолетние результаты лабораторных исследований по каждому компоненту зимостойкости, сорта яблони по устойчивости почек, коры и древесины к комплексу низкотемпературных стрессфакторов зимы были распределены на группы (таблица 8).

Комплексной морозоустойчивостью почек и тканей на уровне Коричного полосатого обладают сорта Ивановка и Шаропай; на уровне Грушовки московской - Багрянка новая, Кандиль орловский, Куликовское и Летнее полосатое; на уровне Антоновки обыкновенной - Анис полосатый, Болотовское, Имрус, Мирончик, Орловский пионер, Память Исаева, Память Воину, Солнышко, Старт и Чистотел.


Анализ распределения сортов груши в зависимости от степени подмерзания согласно компонентам зимостойкости позволяет заклю-

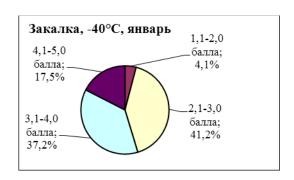

чить, что подавляющее большинство сортов достаточно устойчивы к раннезимним морозам до -30° C.

Таблица 8 - Группировка сортов яблони по устойчивости к комплексу низкотемпературных стресс-факторов зимы

	Морозоустойчивость на уровне						
Коричного полосатого	Грушовки московской	Антоновки обыкновенной					
	Почк	И					
Ивановка, Красное летнее, Шаропай	Анис полосатый, Багрянка новая, Болотовское, Брусничное, Кандиль орловский, Куликовское, Летнее полосатое, Мирончик, Поповка, Скрыжапель	Веньяминовское, Имрус, Курна- ковское, Коробовка, Осеннее поло- сатое, Орловский пионер, Память воину, Солнышко, Синап орлов- ский, 18-30-150					
	Кора						
Красное летнее, Ивановка, Шаропай	Анис полосатый, Багрян- ка новая, Кандиль орлов- ский, Куликовское, Лет- нее полосатое, Память воину	Болотовское, Брусничное, Имрус, Заря, Коробовка, Курнаковское, Мирончик, Орловский пионер, Поповка, Солнцедар, Солнышко, Скрыжапель, Старт, 18-30-150					
	Древеси						
Ивановка, Шаропай	Багрянка новая, Коробов- ка, Мирончик, Уральское масляное, Летнее полоса- тое, Поповка, Куликов- ское, Болотовское, Кан- диль орловский	Анис полосатый, Боровинка, Веньяминовское, Имрус, Осеннее полосатое, Орловский пионер, Орловим, Память воину, Память Исаева, Рождественское, Скрыжапель, Синап орловский, Солнышко, Старт, Строевское, Уралочка, Уктус, Чистотел, 26-51-8					
	Почки, кора и	1					
Ивановка, Шаропай	Багрянка новая, Кули- ковское, Летнее полоса- тое, Кандиль орловский	Анис полосатый, Болотовское, Имрус, Мирончик, Орловский пионер, Память Исаева, Память Воину, Солнышко, Старт, Чистотел					

У 75,0 % особей сообщества после заданного режима установлено подмерзание вегетативных почек и тканей до 2,0 баллов, в том числе у 43,5 % отмечены повреждения в пределах 0,0-1,0 балла (рисунок 4).

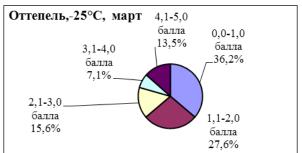


Рисунок 4 - Распределение сортообразцов груши по степени подмерзания при разных режимах искусственного промораживания

Это свидетельствует о высокой экологической толерантности груши в отношении абиотических факторов в летне-осенний период, что обеспечивает своевременное вызревание тканей и прохождение фаз закаливания. Максимальный балл подмерзания отмечен по вегетативным почкам. Ткани сохранялись здоровыми.

Резкие перепады температур в период оттепели (3-й компонент) груша выдерживает несколько хуже, чем ранние морозы. Понижение температуры до -25° С после неглубокой оттепели при 2° С в течение 5 дней у 63,8 % сортообразцов вызвало подмерзание до 2,0 балла, в том числе у 36,2 % - до 1,0 балла. Морозоустойчивость в этот период определяется устойчивостью почек и коры.

Способность повторно закаливаться после оттепели в конце зимовки и выдерживать морозы до -35°C (4-й компонент) с повреждением до 1,0 балла выявлена всего у 2,2 % сортов груши - Веселинка и Сказочная. У 22,1 % отмечено повреждение в пределах 1,1-2,0 балла. От возвратных морозов в первую очередь страдает древесина.

Критические морозы до -40°C (2-й компонент) являются наиболее серьезным испытанием для биоресурсов груши. Лимитирует морозоустойчивость в закаленном состоянии древесина и почки. Не выявлено ни одного сорта, способного противостоять таким морозам с подмерзанием древесины до 1,0 балла. Всего отобрано 4,1 % образцов с повреждением последней в пределах 1,1-2,0 балла. Это сорта Сказочная, Осенняя желтая, Лида и Тема. Большинство изученных генотипов можно охарактеризовать как среднезимостойкие, повреждение вегетативных почек и тканей составило 2,1-3,0 балла. Всеми компонентами зимостойкости на уровне Бессемянки и выше по отдельным компонентам обладают сорта Белорусская поздняя, Веселинка, Декабринка, Есенинская, Кафедральная, Краснобокая, Лада, Москвичка, Памяти Жегалова Памяти Яковлева, Сказочная и Чижовская (таблица 9).

Высокозимостойкие и зимостойкие генотипы выявлены как в гибридных популяциях 1-2-го поколения *P. ussuriensis*, так и среди гибридных популяций *P. communis*.

В условиях Орловской области в период цветения плодовых растений утренние заморозки случаются почти ежегодно. Это отрицательно сказывается на опылении цветков из-за отсутствия лета пчел и других насекомых, на прорастании пыльцы, что не обеспечивает полноценного оплодотворения и развития завязей. Часть цветков при весенних заморозках погибает. По данным

Таблица 9 - Группировка сортов груши по наличию компонентов зимостойкости на уровне зимостойкого сорта Бессемянка

1 -устойчивость к раннезим-	2 - максималь-	3 -устойчивость в	4 - способ-	Обладают всеми компо-
ним морозам, –30°C	ная морозо-	период оттепели, -	ность к по-	нентами зимостойкости
* ·	*	1 ''		нентами зимостоикости
1,2:0,8:0,0*	устойчивость, -		вторной за-	
	40°C	1,0:0,0:0,0*	калке, -35°С	
	1,5:0,5:3,0*		1,5:0,6:2,0*	
Средн	нерусские, урало-	-сибирские, украинские	е, белорусские с	сорта
Орловская красавица, Па-	Муратовская,	Орловская красавица,	Орловская	Белорусская поздняя, Весе-
мятная, Муратовская, Бо-	Есенинская	Памятная, Муратов-	красавица,	линка, Декабринка Есенин-
таническая, Марсианка,	Белорусская	ская, Ботаническая,	Памятная,	ская, Краснобокая, Лука-
Нерусса, Памяти Паршина,	поздняя, Лука-	Марсианка, Нерусса,	Есенинская	шовка, Чижовская, Памяти
Русановская, Тютчевская,	шовка, Чижов-	Памяти Паршина,	Курянка, Май-	Жегалова, Кафедральная,
Яснополянская, Комета,	ская, Памяти	Русановская, Тют-	копская краса-	Лада, Москвичка, Сказоч-
Орловская летняя, Январ-	Жегалова, Лада,	чевская, Яснополян-	вица, Москов-	ная, Памяти Яковлева
ская Красавица Черненко,	Кафедральная,	ская, Среднерусская	ская ранняя	
Майкопская красавица,	Москвичка	Красавица Черненко,	_	
Московская ранняя, Ябло-		Майкопская красави-		
ковидная		ца, Московская ран-		
		няя, Яблоковидная		

^{* -} подмерзание почек : коры : древесины контрольного сорта Бессемянка, в баллах

Міttelstadt (1989), ежегодно в мире из-за весенних заморозков теряется от 5 до 15 % урожая. Поэтому актуален отбор устойчивых к заморозкам сортов. У сортов груши бутоны и цветки частично погибли уже при заморозке -1° С (таблица 10). Это проявляется потемнением пестика как наиболее уязвимой части цветка. Рыхлые бутоны, в которых пестик не касается лепестков, более заморозкоустойчивы, чем цветки.

Таблица 10 - Гибель бутонов и цветков груши при разных режимах искусственного промораживания, (%)

Сорт	- 1° C		- 2° C		- 3° C		- 4° C	
	Бутоны	Цветки	Буто-	Цветки	Буто-	Цветки	Бутоны	Цветки
			ны		ны			
Орловская	32,6	44,1	73,0	88,4	87,6	100,0	100,0	100,0
летняя								
Есенинская	24,1	39,0	66,1	84,7	75,2	100,0	88,1	100,0
Памятная	20,0	35,0	61,3	80,3	71,7	100,0	84,4	100,0
Русановская	18,9	34,3	58,4	78,4	69,3	100,0	80,3	100,0
Тютчевская	15,3	32,1	55,7	75,6	67,2	97,2	76,4	100,0
Памяти	12,5	30,2	52,5	72,0	66,0	94,0	75,7	100,0
Паршина								
Муратовская	11,9	30,1	50,1	69,2	64,6	88,0	70,1	100,0
Орловская	9,0	28,4	47,0	67,1	57,1	85,6	68,7	100,0
красавица								

При заморозке до -2° С в зависимости от сорта погибло 47,0-73,0 % рыхлых бутонов и 67,1-88,4 % цветков.

Заморозок до -3° С является критическим, т.к. погибло 85,6-100,0 % цветков и 57,1-87,6 рыхлых бутонов. При -4° С погибли цветки у всех изучаемых сортов, но часть рыхлых бутонов сохранилась, что свидетельствует о более высокой заморозкоустойчивости сортов груши Русановская, Тютчевская, Память Паршина, Муратовская и Русская красавица.

Наиболее перспективным в этом отношении является сорт груши летнего срока созревания Орловская красавица, у которого сохранилось живыми 68,7 % бутонов.

Анализ популяции сливы *Prúnus doméstica L*. показал, что всеми компонентами зимостойкости на уровне районированного сорта Скороплодная обладает сорт Опата. У сортов Аврора, Орловский сувенир и Неженка установлен достаточно высокий уровень компонентов зи-

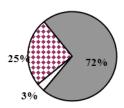
мостойкости, однако они незначительно уступают Скороплодной по изучаемым признакам. Сорта Евразия 21, Рекорд и Никольская желтая способны сохранять, а последний и восстанавливать морозостойкость после оттепелей на уровне Скороплодной. Сорт Волжская красавица значительно повреждается критическими морозами в середине зимы, сорт Аленушка повреждается при возвратных морозах после оттепелей.

Закономерности наследования компонентов зимостойкости гибридными популяциями яблони и груши

Анализ устойчивости гибридных популяций яблони по 2+3 компонентам зимостойкости подтверждает литературные данные о том, что характер расщепления в потомстве соответствует полигенному типу наследования с высокой амплитудой изменчивости по степени подмерзания в зависимости от исходных родительских форм. В комбинациях скрещивания типа «зимостойкий х зимостойкий» выход высокозимостойких генотипов на уровне Коричного полосатого варьировал в пределах 0,0-22,2 % (рисунок 5). В комбинациях скрещивания типа «зимостойкий х среднезимостойкий» - 0,0-6,9 %. В комбинациях скрещивания типа «среднезимостойкий х среднезимостойкий» - 0,0-10,3 %. Наибольшую ценность представляет комбинация Ренет Черненко х Свежесть, в которой отобрано 10,3 % высокозимостойких трансгрессивных сеянцев.


Для качественной оценки проявления признака морозоустойчивости в гибридных популяциях яблони вычисляли степень доминирования, или показатель наследования признака (H_p). Наследование морозоустойчивости древесины гибридным потомством семьи Мелба х 16-40-111 (R12740-7A — свободное опыление) можно охарактеризовать как положительное доминирование (рисунок 6). P_1 и P_2 — степень подмерзания соответственно материнской и отцовской форм.

Наследование морозоустойчивости древесины гибридными популяциями комбинаций скрещивания Ренет Черненко х 22-34-93 (814 — ПА-29-1-1-63), Орлик х 23-12-54 (814 — свободное опыление), 23-16-25 (814 — свободное опыление) х Орлик, Ренет Черненко х Соор-10 и Либерти х Антоновка обыкновенная как промежуточное проявление признака (рисунок 7).


Зимостойкий х зимостойкий

Зимостойкий х среднезимостойкий

Среднезимостойкий х среднезимостойкий

Среднезимостойкий х незимостойкий

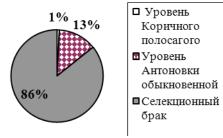


Рисунок 5 - Особенности расщепления в потомствах гибридных популяций яблони на устойчивость к морозу по 2+3 компонентам при разных типах скрещивания

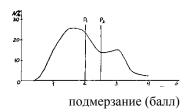


Рисунок 6 - Характер наследования морозоустойчивости древесины гибридной популяцией семьи Мелба x I6-40-111. Положительное доминирование.

Рисунок - 7. Характер наследования морозоустойчивости древесины гибридной популяцией семьи Ренет Черненко х 22-34-93. Промежуточное проявление признака.

В семьях Ренет Черненко х Флорина, 13-83-88 (Антоновка новая х Несравненное) х 21989 (Скрыжапель х Прима), Ренет Черненко х Свежесть отмечено отрицательное доминирование по изучаемому признаку.

В семьях со степенью доминирования меньше -1 отмечено отрицательное сверхдоминирование по наследованию морозоустойчивости древесины (рисунок 8).

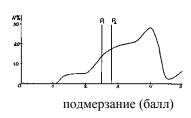


Рисунок 8 - Характер наследования морозоустойчивости древесины гибридной популяцией семьи 16-40-111 х 7-1-112. Отрицательное сверхдоминирование.

Для подтверждения правомочности отбора зимостойких генотипов в двухлетнем возрасте гибридная популяция яблони семьи 22-26-143 (Уэлси х OR38T17) х 23-10-115 (Уэлси х 13-65-3) была искусственно проморожена при одних и тех же режимах в 1996 (двухлетние сеянцы) и 2008 (плодоносящие) годах. Установлена сильная связь между степенью подмерзания почек и тканей в раннем и плодоносящем возрасте, соответственно 0,91* и 0,92*.

Ценными донорами являются сорта Антоновка обыкновенная, Мелба, Ренет Черненко, Свежесть, Северный синап и форма 16-40-111. С их участием получено 5,2-28,9 % высокозимостойких генотипов.

Высокая селекционная ценность по выходу гибридных сеянцев груши, устойчивых к морозу по 2+3-му компонентам, установлена в популяциях, генетически связанных с высокозимостойким сортом Пхорун. Так, в семье 17-43-30 (Пхорун – своб. опыл.) х Шихан выделено 5,0 % трансгрессивных генотипов, которые выдержали –37°С в январе и затем -25°С в феврале после оттепели без повреждений. В гибридной популяции семьи 24-45-45 (Пхорун х Оливье де Серр) х (Жерве+ Оливье де Серр + Деканка зимняя) отобрано 33,3 % сеянцев с устойчивостью к морозу на уровне Тонковетки. Перспективные гибридные сеянцы 17-43-30 и 24-45-45 являются донорами высокой зимостойкости. Значительный выход устойчивых к морозу сеянцев выявлен в популяциях, с использованием в качестве одного из родителей сорта Белорусская поздняя и сортов и гибридов, производных первоговторого поколения *Р. ussuriensis* – Памяти Яковлева, Есенинская, Чижовская, с. Яковлева 111, 24-46-199.

Более морозоустойчивое потомство получено при отдаленной гибридизации. Так, в гибридной популяции семьи 40-2 (Бретфелпс х ирга колосистая) х 40-4 (Бретфелпс х ирга колосистая) обе родительские формы генетически связаны с высокозимостойкой иргой колосистой. В результате в потомстве выделено 40,0 % сеянцев, которые превзошли уровень Тонковетки. В популяциях с участием Хеномелиса японского отобрано 5,0–9,9 % сеянцев с морозоустойчивостью выше Тонковетки.

Таким образом, выявлены новые доноры высокого уровня компонентов зимостойкости по яблоне и груше, проверенные по потомству. Отобраны высокозимостойкие генотипы яблони и груши в популяциях различного генетического происхождения — *M. baccata, M. floribunda, P. communes, P. ussuriensis, P. bretschneidrii.*

Влияние агротехнических приемов на устойчивость популяций ягодных культур и саженцев груши к температурным факторам

Ряд авторов отмечает, что кремний выполняет большое количество функций в жизни растений и особенно важен в стрессовых условиях (Довгун, 2008; Матыченков, 2008; Heather и др., 2007; Epstein, 2009). Природный цеолит Хотынецкого месторождения Орловской области в первую очередь является источником соединений кремния.

Доказано, что кремний в оптимальных дозах способствует лучшему обмену в тканях азота и фосфора, повышает потребление бора и ряда других элементов. Оптимизация кремниевого питания растений приводит к увеличению площади листьев и создает благоприятные условия для биосинтеза пластидных пигментов (Кемечева, 2003).

К биопрепаратам нового поколения, проявляющим активность на растительных организмах в очень низких концентрациях, относится Эмистим. Он содержит набор ростовых веществ, витаминов, аминокислот и других биологически активных веществ. Симбионт Эмистим оказывает положительное влияние на способность растений вступать в симбиотические связи с обитающими в корневой системе микоризными грибами, тем самым обеспечивая растению сбалансированное питание минеральными элементами, усиление синтеза ростовых веществ (Устинова, 2002). В итоге повышается стрессоустойчивость растений.

Зимостойкость популяций ягодных культур в связи с использованием разных доз цеолита

Малина. В годы исследований зимы были теплыми. Сумма отрицательных температур воздуха составила $427,8-543,1^{\circ}$ С. Минимальная температура воздуха $-27,2^{\circ}$ С отмечена в январе 2007 г. Такие морозы не являются критическими для малины, если растения прошли своевременно 1-ю и 2-ю фазы закаливания. Однако в зиму 2006/2007 года в декабре-феврале отмечено 46 дней с оттепелями, что значительно снизило закалку. Резкие колебания температур в период оттепелей и после них вызвали подмерзание побегов (рисунок 9) и гибель почек малины в пределах от 46,8 % до 25,2 %.

Степень подмерзания побегов варьировала в пределах 1,8-3,5 балла. На фоне полного минерального удобрения в дозе $N_{60}P_{90}K_{90}$ и 10 т/га цеолита степень повреждения побегов снизилась до 2,2 балла. Гибель почек составила 27,9%. Общее состояние растений оценивалось на 3,3-3,5 балла. По совокупности таких показателей как оводненность листьев, интенсивность транспирации, содержание хлорофилла, площадь листьев, урожайность и экономическая эффективность данный вариант оказался оптимальным. Прибавка урожайности составила 18,9%.

Рисунок 9 - Подмерзание побегов малины в зиму 2007 года

Черная смородина и крыжовник. Использование 16 т/га цеолита на фоне полного минерального удобрения в дозе $N_{90}P_{90}K_{90}$ способствовало повышению уровня зимостойкости черной смородины и крыжовника, а также активизации регенерационных процессов в растениях. Об этом свидетельствует активное распускание почек, увеличение площади листьев, количества и длины образовавшихся корней при

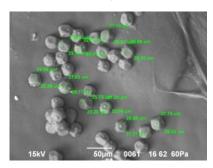
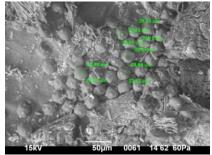



Рисунок 10 - Общий вид пыльцевых зерен черной смородины сорта Кипиана на контрольном варианте до промораживания.

Рисунок 11 - Пыльцевые зерна черной смородины сорта Кипиана с контрольного варианта после промораживания при -4°C

отращивании веток черной смородины. Урожайность черной смородины повысилась на 34,4 %, крыжовника - на 15,0 %. Такой агрофон способствует сохранности пыльцы в условиях весенних заморозков до -4-5°С (рис. 10-12).

Пыльца растений, выращенных на фоне полного минерального удобрения с добавлением 16 т/га цеолита, более устойчива к весенним заморозкам до -4 $^{\circ}$ C по сравнению с другими вариантами. Зерна равномерно выполнены, с четкими гранями, легко отделяются от пыльников, имеют почти правильную кубовидную форму. Поверхность зерна отличается рыхлой ячеистой структурой. Средний размер зерен составляет 27,02 мкм.

После воздействия температурой $-4^{\circ}\mathrm{C}$ на цветки побегов с контрольного варианта отмечена деформация зерен и слабое их отделение от разрушенных пыльников.

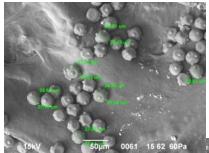
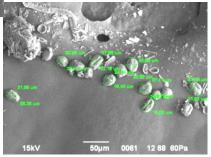



Рисунок 13 - Общий вид и размер пыльцевых зерен крыжовника после промораживания при $-5^{\circ}C$ на варианте с $N_{90}P_{90}K_{90}+16$ т/га цеолита

Земляника. В течение зимнего периода 2005/2006 года земляника в полевых условиях под-

Рисунок 12 - Пыльцевые зерна черной смородины сорта Кипиана после воздействия температурой - 4° С с варианта $N_{90}P_{90}K_{90}$ +16 т/га цеолита

Такая же закономерность прослеживается в опытах с крыжовником (рисунок 13).

вергалась воздействию ряда неблагоприятных абиотических факторов, в результате чего отмечено повреждение листьев, рожков, корневищ разной степени. Изучаемые сорта характеризуются разным уровнем зимостойкости, также выявлена сортовая специфичность изучаемого признака в зависимости от агрохимического фона. Так, степень подмерзания земляники сорта Мамочка варьировала в пределах 1,8-3,3 балла. Подмерзание сорта Былинная изменялось в пределах 2,7-3,7 балла. У сорта Богема выявлена более высокая зимостойкость - степень повреждения варьировала в пределах 1,8-3,0 балла. Разрезы кор-

невищ позволили получить дополнительные сведения о характере и степени подмерзания земляники (рисунки 14, 15).

Рисунок 14 - Погибли ткани нижней части корневища сорта земляники Мамочка и один из рожков ($N_{120}P_{60}K_{180}$ + цеолита 5т/га)

Рисунок 15 - Подмерзание корневища сорта земляники Мамочка ($N_{120}P_{60}K_{180}$)

У сортов Мамочка и Былинная отмечены средние и значительные повреждения корневищ. Лучшее состояние растений отме-

чено на вариантах с использованием цеолита в дозе 15 т/га на фоне полного минерального удобрения $N_{120}P_{60}K_{180}$.

Следовательно, внесение в почву цеолита в дозе 10-16 т/га совместно с полным минеральным удобрением в дозе $N_{90}P_{90}K_{90}$ (черная смородина, крыжовник, малина) и $N_{120}P_{60}K_{180}$ (земляника) повышает выносливость популяций ягодных культур к лимитирующим низкотемпературным факторам зимнего периода.

Влияние биопрепарата Эмистим на зимостойкость популяции груши Памяти Яковлева в питомнике

Положительные результаты получены также в питомнике при производстве саженцев груши сорта Памяти Яковлева с использованием биопрепарата Эмистим (таблица 11). Сохранность глазков на осень 2010 года составила 81,1-97,8 %. Несмотря на поливы, часть глазков не прижилась, что связано с аномально жаркой и сухой погодой. Сохранность глазков на весну 2011 года снизилась до 71,44-93,3 %. Это обу-

словлено условиями перезимовки. В зиму 2010/2011 года минимальная температура воздуха в феврале опускалась до $-34,2^{\circ}$ С, на поверхности снега - до $-35-36^{\circ}$ С. Кроме того, во второй декаде марта максимальная температура в дневные часы поднималась до $6,5^{\circ}$ С, а ночью мороз достигал $16,5^{\circ}$ С. Это спровоцировало появление солнечных ожогов на штамбах подвоя и в результате - гибель части глазков.

Таблица 11 - Итоги окулировки сорта груши Памяти Яковлева на сеянцы груши обыкновенной

Вариант	Заокули-	Сохранность	Сохранность	Прижи	Диаметр
	ровано,	глазков на осень	глазков на	жи-	штамба,
	шт.	2010 г., %	весну 2011 г.,	лось,	СМ
			%	%	
Контроль	90	81,1	71,4	71,4	0,94
Эмистим, 1 мл/м ³	90	90,0	84,4	84,4	1,06
Эмистим, 2 мл/м^3	90	97,8	93,3	93,0	1,17
Эмистим, 3 мл/м^3	90	93,3	91,1	83,3	1,01
HCP _{O5}	-	-	-	8,4	0,1

Препарат Эмистим оказал по сравнению с контролем положительное влияние на сохранность глазков во всех 3-х дозах. Однако дальнейшие исследования показали, что приживаемость глазков снизилась на 7,8 % по сравнению с сохранившимися на весну на варианте с дозой Эмистима 3 мл/м 3 .

На варианте с применением биопрепарата в дозе 2 мл/м^3 площадь листьев увеличилась на 15,0 %, содержание хлорофилла — на 14,6 %, оводненность листьев — на 12 %, интенсивность транспирации снизилась на 14,7 %. В результате выход стандартных саженцев 1 и 2-го сорта составил 82,2 % (таблица 12).

Таблица 12 - Выход (%) стандартных саженцев груши, 2011-2013 гг.

Вариант	1 сорт	± к контролю, %	2 сорт	± к контролю, %
Контроль	32,0	-	38,6	-
Эмистим 1мл/м ³	36,2	+ 4,2	44,5	+ 5,9
Эмистим 2 мл/м ³	39,4	+ 7,4	42,8	+ 4,2
Эмистим 3 мл/м ³	35,0	+ 3,0	41,0	+ 2,4
HCP ₀₅	5,1	-	5,3	

Хороший результат получен и при обработке растений Эмистимом в дозе 1 мл/м^3 воды: 1-го сорта -36.2 %, 2-го -44.5 %. Прибавка

по выходу стандартных саженцев по сравнению с контролем составила 10,1%. Увеличение концентрации препарата до 3 мл/м³ в конечном итоге привело к снижению выхода стандартных саженцев по сравнению с одинарной и двойной дозой. Это можно объяснить правилом фазовых переходов «польза-вред», когда небольшие концентрации действующего вещества усиливают жизненные функции живого организма, а большие оказывают ингибирующее действие.

Анализ экономической эффективности применяемых агроприемов показал, что использование цеолита Хотынецкого месторождения и биопрепарата Эмистим при возделывании садовых культур способствует повышению рентабельности производства на 27,2-34,6 %.

Заключение

- 1. Оценка популяций садовых культур позволила выделить наиболее адаптированные к сумме температурных стресс-факторов зимнего и вегетационного периодов сорта. Использование их в дальнейшей селекционной работе на комплекс хозяйственно-ценных признаков и внедрение в производство будут способствовать повышению биоразнообразия ценозов плодовых и ягодных культур и экологизации садоводства, что является важнейшим принципом устойчивого развития отрасли.
- 2. При комплексной оценке стресс-факторов зимы за период с 1975 по 2010 гг. для сообщества садовых культур выявлено 33,3% суровых зим. Основными лимитирующими факторами в условиях ЦЧР являются экстремальные морозы до -38-39°C- 13,9% зим и морозы до -22-(-25)°C в период оттепели- 22,2% зим.
- 3. При длительном закаливании растений результаты воздействия сублетальной температурой не отражают истинную морозоустойчивость тканей, степень повреждения занижена на 0,5-1,0 балла, причем сильнее у средне- и слабозимостойких сортов.
- 4. Для определения устойчивости груши к морозам до -25° С в период оттепели, оптимальным режимом искусственной оттепели является $+5^{\circ}$ С в течение 5-ти дней, т.к. прослеживается весь спектр повреждений от слабых до сильных.
- 5. При совместном действии сублетальной температуры и иссушения в морозильной камере степень повреждения тканей усиливается на 0,5-1,3 балла. При этом ранжирование сортов по изучаемому признаку сохраняется.
- 6. Согласно закону относительной независимости адаптаций генотипы, которые характеризуются экологической толерантностью к сублетальным температурам, приближающимся к нижнему пределу

выносливости по каждому компоненту в отдельности, не всегда отличаются толерантностью к сумме низкотемпературных стресс-факторов зимы. Последовательное наложение повреждающих факторов на одни и те же объекты в лабораторных условиях позволило проследить на каком этапе теряется устойчивость к морозу и выявить выдающиеся генотипы по признаку «зимостойкость» - Груша от Сомова, Памятная, Перун, Барнаульская десертная и Белорусская поздняя.

- 7. Методы определения низкочастотного электрического сопротивления и накопления антоцианов в коре однолетних веток в позднеосенний период отражают общую тенденцию формирования зимостойкости и не позволяют достоверно ранжировать генотипы по устойчивости к морозу. Сопряженность между признаками 52-67 %.
- 8. У новых иммунных к парше (ген V_f) сортов яблони Болотовское, Имрус, Кандиль Орловский, Солнышко, Старт, высокоустойчивых к парше (ген V_m) сортов Орловский пионер, Память Исаева и Чистотел выявлен диапазон толерантности по всем компонентам зимостойкости на уровне районированного сорта Антоновка обыкновенная, причем Кандиль орловский превосходит контрольный сорт по уровню 2-го и 3-го компонентов.
- 9. Сравнительная оценка биоресурсов груши различного эколого-географического происхождения позволила выявить сорта и перспективные генотипы, обладающие всеми компонентами зимостойкости на уровне высокозимостойкого сорта Тонковетка и зимостойкого сорта Бессемянка. Всего выделено 29 сортообразцов.
- 10. Широким диапазоном толерантности к температурным стрессорам зимы отличается сорт сливы Опата. Сорта Аврора, Орловский сувенир и Неженка незначительно уступают по компонентам зимостойкости районированному сорту Скороплодная.
- 11. Ценными исходными формами являются сорта яблони Антоновка обыкновенная, Мелба, Ренет Черненко, Свежесть, Синап северный и гибридный сеянец 16-40-111 (R12740-7A-свободное опыление). С их участием в среднем получено 5,2-28,9 % высокозимостойких генотипов.
- 12. В гибридных популяциях груши выделены морозоустойчивые генотипы на основе родительских форм различного генетического происхождения *P. communes, P. ussuriensis, P. bretschneidrii.* Это создает предпосылки для обновления и пополнения биоресурсов груши в условиях ЦЧР.
- 13. Наиболее продуктивными донорами генотипов груши, толерантных к морозу по 2+3-му компонентам, являются высокозимостойкие сорт Белорусская поздняя, а также сорта и гибриды, производные

- 1-3-го поколения *P. ussuriensis* Памяти Яковлева, Есенинская, Чижовская, с. Яковлева 111 и сеянцы 17-43-30, 24-45-45, 24-46-199.
- 14. Цеолит Хотынецкого месторождения Орловской области оказывает положительное влияние на водно-физические свойства почвы, повышает экологическую устойчивость популяций ягодных культур в отношении стрессоров зимнего и летнего периода.
- 15. Трехкратная обработка саженцев груши в период вегетации биопрепаратом Эмистим в дозе 2 мл/м³ воды способствовала увеличению облиственности, площади листовой поверхности, содержания хлорофилла, оводненности листьев, снижению интенсивности транспирации. В результате выход стандартных саженцев 1-го и 2-го сорта увеличился на 11,6 % по сравнению с контрольным вариантом.
- 16. Диагностика экологической толерантности к низкотемпературным стрессорам зимы сообщества садовых культур методом искусственного промораживания позволяет полнее оценить вероятность различных типов повреждений. Это дает возможность повысить точность прогноза экологической надежности насаждений в природно-климатических условиях ЦЧР.
- 17. Использование цеолита Хотынецкого месторождения и биопрепарата Эмистим при возделывании садовых культур способствует повышению рентабельности производства на 27,2-34,6 %.

Рекомендации

- 1. С целью сохранения и обновления биологических ресурсов и повышения биологического разнообразия садовых агроценозов в условиях Центрально-Черноземного региона производству рекомендуется возделывание следующих сортов плодовых культур, устойчивых к низкотемпературным стрессорам зимнего периода:
- яблоня Болотовское, Имрус, Кандиль Орловский, Солнышко и Старт.
- груша Есенинская, Чижовская, Памяти Жегалова, Кафедральная, Москвичка, Памяти Яковлева;
 - слива Евразия 21, Неженка и Орловский сувенир.
- 2. При закладке плантаций с популяциями ягодных культур для повышения устойчивости к неблагоприятным абиотическим факторам необходимо вносить в почву цеолит Хотынецкого месторождения Орловской области:
- под черную смородину и крыжовник 16 т/га совместно с полным минеральным удобрением в дозе $N_{90}P_{90}K_{90}$;
 - под землянику 15 т/га на фоне $N_{120}P_{60}K_{180}$;

- под малину 10 т/га на фоне $N_{60}P_{90}K_{90}$.
- 3. В питомнике при выращивании саженцев груши рекомендуется трехкратная обработка растений в период вегетации (первая половина мая, июня и июля) биопрепаратом Эмистим в дозе 2 мл/м³ воды.
- 4. С целью ускорения и интенсификации селекционного процесса научно-исследовательским учреждениям рекомендуется использовать модифицированную методику ускоренной оценки биоресурсов садоводства и отбора морозоустойчивых генотипов в раннем возрасте в лабораторных условиях.

Список работ, опубликованных по материалам диссертации

Публикации в изданиях, рекомендованных ВАК РФ:

- 1. Резвякова, С.В. Использование низкочастотного сопротивления для определения морозостойкости яблони / С.В. Резвякова, Е.Н. Джигадло // Селекция и семеноводство. 1994. №.2. С. 9-11.
- 2. Резвякова, С.В. Морозоустойчивость гибридных сеянцев яблони в зависимости от происхождения / С.В. Резвякова // Плодоводство и ягодоводство России. 1995. Т. II. С. 32-35.
- 3. Трунова, В.А. О морозоустойчивости иммунных к парше гибридных сеянцев яблони в зависимости от разнообразия исходных форм / В.А. Трунова, С.В. Резвякова // Сельскохозяйственная биология. 1996. № 1. С. 112-114.
- 4. Трунова, В.А. Зимостойкость сортов сливы / В.А. Трунова, С.В. Резвякова, Ю.И. Хабаров // Садоводство и виноградарство. 1997. № 2. С. 19-21.
- 5. Красова, Н.Г. Зимостойкость новых сортов груши / Н.Г. Красова, С.В. Резвякова, В.А. Трунова, Н.М. Глазова // Садоводство и виноградарство. 1997. N_2 5-6. С. 15-16.
- 6. Резвякова, С.В. Актуальные вопросы совершенствования сортимента и технологии возделывания груши / С.В. Резвякова // Садоводство и виноградарство. 1998. \mathcal{N} 1. С. 21-23.
- 7. Седов, Е.Н. Интенсификация и ускорение селекционного процесса яблони / Е.Н. Седов, В.В. Жданов, З.М. Серова, С.В. Резвякова // Вестник РАСХН. 1998. N 5. С. 43-45.
- 8. Седов, Е.Н. Роль биологически интенсивных сортов яблони / Е.Н. Седов, В.В. Жданов, Г.А. Седышева, З.А. Седова, З.М. Серова, С.В. Резвякова // Вестник РАСХН. 1999. N 5. С. 38-41.
- 9. Резвякова, С.В. Основные направления и методы селекции семечковых культур / С.В. Резвякова // Аграрная наука. 2001. № 12. С. 21-23.
- 10. Резвякова, С.В. Сравнительная оценка сортов груши по основным компонентам зимостойкости / С.В. Резвякова // Аграрная наука. 2004. № 1. С. 25-26.

- 11. Резвякова, С.В. К методике ускоренного отбора гибридных сеянцев яблони и груши на зимостойкость / С.В. Резвякова // Известия ТСХА. 2005. Вып. 4. С. 125-131.
- 12. Резвякова, С.В. К методике испытания сортов груши по зимостой-кости в контролируемых условиях / С.В. Резвякова // Вестник РАСХН. 2006. № 6. C. 50-51.
- 13. Резвякова, С.В. К проблеме изучения зимостойкости яблони и груши / С.В. Резвякова // Селекция и семеноводство. 2006. № 3-4. С. 10-14.
- 14. Резвякова, С.В. Эколого-биологический подход к подбору плодовых культур по компонентам зимостойкости / С.В. Резвякова // Вестник Орел-ГАУ. -2007. -№ 4(7). C. 26-29.
- 15. Резвякова, С.В. Зимостойкость сортов груши, производных *Р. Ussuriensis* / С.В. Резвякова // Вестник ОрелГАУ. 2008. № 4(13). С. 12-13.
- 16. Резвякова, С.В. Влияние агрофона на компоненты зимостойкости черной смородины / С.В. Резвякова, З.Е. Ожерельева // Плодоводство и ягодоводство России. 2009. Т. XXII. Ч. 2. С. 211-217.
- 17. Мотылева, С.М. Влияние цеолита Хотынецкого месторождения на некоторые физиологические показатели и урожайность крыжовника / С.М. Мотылева, С.В. Резвякова // Вестник ОрелГАУ. 2010. № 3(24). С. 17-21.
- 18. Резвякова, С.В. Отбор зимостойких сеянцев яблони в раннем возрасте / С.В. Резвякова // Вестник ОрелГАУ. 2010. № 3(24). С. 39-42.
- 19. Резвякова, С.В. Экологическое обоснование выбора режимов искусственного промораживания плодово-ягодных культур в условиях ЦЧР / С.В. Резвякова // Вестник ОрелГАУ. 2011. № 3(30). С. 26-29.
- 20. Резвякова, С.В. Адаптивный потенциал устойчивости груши к стресс-факторам зимнего периода / С.В. Резвякова / Вестник ОрелГАУ. − 2013. № 1(40). С. 84-88.
- 21. Резвякова, С.В. Экологическая толерантность смородины черной в связи с использованием цеолито-минерального удобрения / С.В. Резвякова // Плодоводство и ягодоводство России. 2013. № 2. Т. XXXVI. С. 120-126.
- 22. Gurin, A.G. Growth of seedlings root system of fruit crops and decorative crops depending on the conditions of a mineral nutrition and depth of soil treatment / A.G. Gurin, I.I. Sycheva, S.V. Rezvyakova // Vestnik OrelGAU. $-2014.\,-\,$ No. 1(46). P. 34-37.
- 23. Гурин, А.Г. Выход посадочного материала садовых культур в зависимости от предпосадочной обработки почвы / А.Г. Гурин, С.В. Резвякова, И.И. Сычева // Плодоводство и ягодоводство России. 2014. Т. XXXX. Ч. 2. С. 98-104.
- 24. Гурин, А.Г. Приемы повышения продуктивности полновозрастных яблоневых садов / А.Г. Гурин, С.В. Резвякова, Н.Ю. Ревин // Плодоводство и ягодоводство России. 2014. Т. XXXX. Ч. 2. С. 90-97.

Монографии

25. Резвякова, С.В. Оценка плодовых культур по компонентам зимостойкости / С.В. Резвякова. — Орел: Изд-во ОрелГАУ. — 2007. — 170 с.

- 26. Резвякова, С.В. Научно-методические основы оценки биоресурсного потенциала зимостойкости плодовых культур в условиях ЦЧР / С.В. Резвякова. Орел: Изд-во ОрелГАУ. 2011. 235 с.
- 27. Гурин, А.Г. Приемы повышения экологической устойчивости и урожайности ягодных культур / А.Г. Гурин, С.В. Резвякова. Орел: Изд-во ОрелГАУ. 2014.-168 с.

Рекомендации

- 28. Резвякова, С.В. Подбор зимостойких сортов плодовых культур для адаптивного садоводства (рекомендации) /С.В. Резвякова. Орел: Изд-во Орел Γ АУ. 2004. 38 с.
- 29. Резвякова, С.В. Модификация и дополнения к методике ускоренной оценки плодовых культур на зимостойкость (методические рекомендации) / С.В. Резвякова. Орел: Изд-во ОрелГАУ. 2005. 45 с.
- 30. Резвякова, С.В. Основные типы повреждений плодовых культур в период зимовки и мероприятия по их восстановлению (рекомендации). Орел: Изд-во ОрелГАУ. 2012. 32 с.

Зарубежные публикации

31. Rezvyakova, S.V. Selection for winterhardiness in apple breeding / S.V. Rezvyakova, E.N. Sedov // Horticulture and Vegetable growing. – V. 17 (3). – Babtai. – 1998. – P. 112-115.

Статьи в аналитических сборниках и материалах конференций

- 32. Трунова, В.А. Оценка исходного материала яблони на зимостой-кость / В.А. Трунова, Н.Г. Красова, С.В. Резвякова // Селекция на зимостой-кость плодовых и ягодных культур: матер. совещ. Москва, 1993. С. 95-101.
- 33. Резвякова, С.В. Поиск источников для селекции на максимальную морозостойкость груши / С.В. Резвякова, В.А. Трунова // Генетика и наследование важнейших признаков плодовых растений: сб. докл. и сообщ. XIV Мичуринских чтений. Мичуринск, 1994. С. 125-130.
- 34. Резвякова, С.В. Использование метода искусственного промораживания на разных этапах селекционного процесса яблони /С.В. Резвякова // Автореф. дисс. ... кандидата сельскохозяйственных наук. Москва. 1996. 24 с.
- 35. Резвякова, С.В. Морозоустойчивость груши при разных режимах искусственного промораживания / С.В. Резвякова, Н.Г. Красова, М.В. Дубовицкая // Селекция и сорторазведение садовых культур. Орел. 1998. С. 74-82.
- 36. Тюрина, М.М. Изучение зимостойкости сортов плодовых и ягодных растений в полевых и лабораторных условиях / М.М. Тюрина, Н.Г. Красова, С.В. Резвякова и др. // Программа и методика сортоизучения плодовых, ягодных и орехоплодных культур. Орел. 1999. С. 59-68.
- 37. Резвякова, С.В. Изучение устойчивости бутонов, цветков и завязей к заморозкам / С.В. Резвякова, Е.А. Долматов, С.Д. Князев // Программа и методика сортоизучения плодовых, ягодных и орехоплодных культур. Орел. 1999. С. 74-76.
- 38. Резвякова, С.В. Сравнительная оценка перспективных форм груши по основным компонентам зимостойкости / С.В. Резвякова, Е.А. Курашева //

- Роль сортов и новых технологий в интенсивном садоводстве: матер. межд. науч.-метод. конф. Орел. 2003. С. 300-302.
- 39. Резвякова, С.В. Отбор морозоустойчивых сеянцев груши в раннем возрасте в практической селекции / С.В. Резвякова // Повышение эффективности садоводства в современных условиях: матер. Всеросс. науч.-практ. конф.—Мичуринск Наукоград РФ. 2003. Т. 2. С. 64-70.
- 40. Резвякова, С.В. Подбор зимостойких сортов яблони и груши для адаптивного садоводства / С.В. Резвякова // Роль современных сортов и технологий в сельскохозяйственном производстве: матер. Всеросс. науч.-практ. конф. Орел. 2005. С. 239-249.
- 41. Резвякова, С.В. Отбор исходных форм плодовых культур по компонентам зимостойкости для использования в селекции /С.В. Резвякова // Пути повышения устойчивости сельскохозяйственного производства в современных условиях: матер. Всеросс. науч.-практ. конф. Орел. 2005. С. 133-141.
- 42. Резвякова, С.В. Результаты перезимовки земляники в зиму 2005/06 года / С.В. Резвякова, М.Н. Кузнецов, О.В. Тарасова // Современные проблемы экологии: докл. Всерос. науч.-техн. конф. Интернет-конф. Москва-Тула. 2006. Книга 1.— С. 73-75.
- 43. Резвякова, С.В. Некоторые агроэкологические аспекты использования цеолита Хотынецкого месторождения на землянике / С.В. Резвякова, М.Н. Кузнецов, С.М. Мотылева // Фундаментальные и прикладные исследования в АПК на современном этапе развития химии: матер. 1 межд. Интернет-конф. Орел. 2008. С. 103-108.
- 44. Резвякова, С.В. Устойчивость черной смородины к максимальным зимним морозам / С.В. Резвякова // Фундаментальные и прикладные исследования в АПК на современном этапе развития химии: матер. II межд. интернетконф. Орел, 2009. С. 83-86.
- 45. Резвякова, С.В. Влияние цеолита на устойчивость черной смородины к зимним морозам и весенним заморозкам / С.В. Резвякова, С.М. Мотылева // Инновационные фундаментальные и прикладные исследования в области химии сельскохозяйственному производству: матер. III межд. Интернет-конф. Орел. 2010. С. 68-71.
- 46. Резвякова, С.В. Эффективность отбора морозоустойчивых гибридных сеянцев яблони в раннем возрасте / С.В. Резвякова // Культурные растения для устойчивого сельского хозяйства в XXI веке. Научные труды / Россельхозакадемия. Москва. 2011. Т. IV. Ч. II. С. 471-475.
- 47. Резвякова, С.В. Зимостойкие сорта груши в условиях Центрально-Черноземного региона РФ / С.В. Резвякова // Наследие Н.И. Вавилова в развитии биологических и сельскохозяйственных наук: матер. межд. науч.-практ. конф. Курган. 2012. С. 76-80.
- 48. Резвякова, С.В. Анализ суровости зим Орловской области в связи с развитием садоводства / С.В. Резвякова // Инновационные пути развития агропромышленного комплекса: задачи и перспективы: сб. науч. тр. Донской аграрной межд. науч.-практ. конф. Зерноград. 2012. С. 315-318.
- 49. Резвякова, С.В. Дискретно-системный подход к оценке плодовых культур по зимостойкости / С.В. Резвякова // Аграрная наука сельскому хо-

- зяйству: матер. VIII межд. науч.-практ. конф., посвященной 70-летию Алтайского ГАУ. Барнаул. 2013. С. 185-187.
- 50. Резвякова С.В. Использование цеолита при возделывании малины / С.В. Резвякова // Наука на службе сельского хозяйства: матер. межд. науч.практ. интернет-конф. Николаев. 2013. С. 176-178.
- 51. Резвякова, С.В. Эффективность использования стимулятора роста нового поколения в плодовом питомнике / С.В. Резвякова, А.Г. Гурин // Проблемы экологизации и биологизации земледелия и пути их решения в современном сельскохозяйственном производстве России: матер Всеросс. науч.-практ. конф. Орел. 2013. С. 193-197.